On numerical and non-numerical ecart
Whyburn has proved that each open mapping defined on arc (a simple closed curve) is light. Charatonik and Omiljanowski have proved that each open mapping defined on a local dendrite is light. Theorem 3.8 is an extension of these results.
Given a topological space , let and denote, respectively, the Salbany compactification of and the compactification map called the Salbany map of . For every continuous function , there is a continuous function , called the Salbany lift of , satisfying . If a continuous function has a stably compact codomain , then there is a Salbany extension of , not necessarily unique, such that . In this paper, we give a condition on a space such that its Salbany map is open. In particular,...
We answer in the affirmative [Th. 3 or Corollary 1] the question of L. V. Keldysh [5, p. 648]: can every Borel set X lying in the space of irrational numbers ℙ not and of the second category in itself be mapped onto an arbitrary analytic set Y ⊂ ℙ of the second category in itself by an open map? Note that under a space of the second category in itself Keldysh understood a Baire space. The answer to the question as stated is negative if X is Baire but Y is not Baire.
It is shown that a space is -Weakly Fréchet-Urysohn for iff it is -Weakly Fréchet-Urysohn for arbitrary , where is the -th left power of and for . We also prove that for -compact spaces, -sequentiality and the property of being a -Weakly Fréchet-Urysohn space with , are equivalent; consequently if is -compact and , then is -sequential iff is -sequential (Boldjiev and Malyhin gave, for each -point , an example of a compact space which is -Fréchet-Urysohn and it is...