Sulla uniformità naturale nei gruppi topologici
We present several sum theorems for Ohio completeness. We prove that Ohio completeness is preserved by taking σ-locally finite closed sums and also by taking point-finite open sums. We provide counterexamples to show that Ohio completeness is preserved neither by taking locally countable closed sums nor by taking countable open sums.
Hölzl et al. showed that it was possible to build “a generic theory of limits based on filters” in Isabelle/HOL [22], [7]. In this paper we present our formalization of this theory in Mizar [6]. First, we compare the notions of the limit of a family indexed by a directed set, or a sequence, in a metric space [30], a real normed linear space [29] and a linear topological space [14] with the concept of the limit of an image filter [16]. Then, following Bourbaki [9], [10] (TG.III, §5.1 Familles sommables...
It is proved that every real cliquish function defined on a separable metrizable space is the sum of three quasicontinuous functions.
A super real closed ring is a commutative ring equipped with the operation of all continuous functions ℝⁿ → ℝ. Examples are rings of continuous functions and super real fields attached to z-prime ideals in the sense of Dales and Woodin. We prove that super real closed rings which are fields are an elementary class of real closed fields which carry all o-minimal expansions of the real field in a natural way. The main part of the paper develops the commutative algebra of super real closed rings, by...
In a former paper, motivated by a recent theory of relators (families of relations), we have investigated increasingly regular and normal functions of one preordered set into another instead of Galois connections and residuated mappings of partially ordered sets. A function of one preordered set into another has been called (1) increasingly -normal, for some function of into , if for any and we have if and only if ; (2) increasingly -regular, for some function of into itself,...
Let D (resp. D*) be the subspace of C = C([0,1], R) consisting of differentiable functions (resp. of functions differentiable at the one point at least). We give topological characterizations of the pairs (C, D) and (C, D*) and use them to give some examples of spaces homeomorphic to CDor to CD*.
For a Tikhonov space X we denote by Pc(X) the semilattice of all continuous pseudometrics on X. It is proved that compact Hausdorff spaces X and Y are homeomorphic if and only if there is a positive-homogeneous (or an additive) semi-lattice isomorphism T:Pc(X) → Pc(Y). A topology on Pc(X) is called admissible if it is intermediate between the compact-open and pointwise topologies on Pc(X). Another result states that Tikhonov spaces X and Y are homeomorphic if and only if there exists a positive-homogeneous...