Fixed point results for generalized contractive multimaps in metric spaces.
The purpose of this article is to present fixed point results for multivalued E ≤-contractions on ordered complete gauge space. Our theorems generalize and extend some recent results given in M. Frigon [7], S. Reich [12], I.A. Rus and A. Petruşel [15] and I.A. Rus et al. [16].
In this paper, we consider self-mappings defined on a metric space endowed with a finite number of graphs. Under certain conditions imposed on the graphs, we establish a new fixed point theorem for such mappings. The obtained result extends, generalizes and improves many existing contributions in the literature including standard fixed point theorems, fixed point theorems on a metric space endowed with a partial order and fixed point theorems for cyclic mappings.
The aim of this manuscript is to establish fixed point results satisfying contractive conditions of rational type in the setting of complex valued metric spaces. The derived results generalize and extend some well known results in the existing literature.