Displaying 41 – 60 of 239

Showing per page

Consonance and Cantor set-selectors

Valentin Gutev (2013)

Open Mathematics

It is shown that every metrizable consonant space is a Cantor set-selector. Some applications are derived from this fact, also the relationship is discussed in the framework of hyperspaces and Prohorov spaces.

Continua with unique symmetric product

José G. Anaya, Enrique Castañeda-Alvarado, Alejandro Illanes (2013)

Commentationes Mathematicae Universitatis Carolinae

Let X be a metric continuum. Let F n ( X ) denote the hyperspace of nonempty subsets of X with at most n elements. We say that the continuum X has unique hyperspace F n ( X ) provided that the following implication holds: if Y is a continuum and F n ( X ) is homeomorphic to F n ( Y ) , then X is homeomorphic to Y . In this paper we prove the following results: (1) if X is an indecomposable continuum such that each nondegenerate proper subcontinuum of X is an arc, then X has unique hyperspace F 2 ( X ) , and (2) let X be an arcwise connected...

Continuous selections on spaces of continuous functions

Angel Tamariz-Mascarúa (2006)

Commentationes Mathematicae Universitatis Carolinae

For a space Z , we denote by ( Z ) , 𝒦 ( Z ) and 2 ( Z ) the hyperspaces of non-empty closed, compact, and subsets of cardinality 2 of Z , respectively, with their Vietoris topology. For spaces X and E , C p ( X , E ) is the space of continuous functions from X to E with its pointwise convergence topology. We analyze in this article when ( Z ) , 𝒦 ( Z ) and 2 ( Z ) have continuous selections for a space Z of the form C p ( X , E ) , where X is zero-dimensional and E is a strongly zero-dimensional metrizable space. We prove that C p ( X , E ) is weakly orderable if and...

Disconnectedness properties of hyperspaces

Rodrigo Hernández-Gutiérrez, Angel Tamariz-Mascarúa (2011)

Commentationes Mathematicae Universitatis Carolinae

Let X be a Hausdorff space and let be one of the hyperspaces C L ( X ) , 𝒦 ( X ) , ( X ) or n ( X ) ( n a positive integer) with the Vietoris topology. We study the following disconnectedness properties for : extremal disconnectedness, being a F ' -space, P -space or weak P -space and hereditary disconnectedness. Our main result states: if X is Hausdorff and F X is a closed subset such that (a) both F and X - F are totally disconnected, (b) the quotient X / F is hereditarily disconnected, then 𝒦 ( X ) is hereditarily disconnected. We also...

Currently displaying 41 – 60 of 239