On the Novak number of a hyperspace
An estimate for the Novak number of a hyperspace with the Vietoris topology is given. As a consequence it is shown that this cardinal function can decrease passing from a space to its hyperspace.
An estimate for the Novak number of a hyperspace with the Vietoris topology is given. As a consequence it is shown that this cardinal function can decrease passing from a space to its hyperspace.
We characterize those Tychonoff quasi-uniform spaces for which the Hausdorff-Bourbaki quasi-uniformity is uniformly locally compact on the family of nonempty compact subsets of . We deduce, among other results, that the Hausdorff-Bourbaki quasi-uniformity of the locally finite quasi-uniformity of a Tychonoff space is uniformly locally compact on if and only if is paracompact and locally compact. We also introduce the notion of a co-uniformly locally compact quasi-uniform space and show...
In the main result, partially answering a question of Telgársky, the following is proven: if X is a first countable R₀-space, then player β (i.e. the EMPTY player) has a winning strategy in the strong Choquet game on X if and only if X contains a nonempty -subspace which is of the first category in itself.
In this paper we construct a Kelley continuum such that is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace is not semi- Kelley. Further we show that small Whitney levels in are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.
Let X be a Tikhonov space, C(X) be the space of all continuous real-valued functions defined on X, and CL(X×ℝ) be the hyperspace of all nonempty closed subsets of X×ℝ. We prove the following result: Let X be a locally connected locally compact paracompact space, and let F ∈ CL(X×ℝ). Then F is in the closure of C(X) in CL(X×ℝ) with the Vietoris topology if and only if: (1) for every x ∈ X, F(x) is nonempty; (2) for every x ∈ X, F(x) is connected; (3) for every isolated x ∈ X, F(x) is a singleton...
The present paper contains results characterizing relatively compact subsets of the space of the closed subsets of a metrizable space, equipped with various hypertopologies. We investigate the hyperspace topologies that admit a representation as weak topologies generated by families of gap functionals defined on closed sets, as well as hit-and-miss topologies and proximal-hit and-miss topologies.
The present paper aims to furnish simple proofs of some recent results about selections on product spaces obtained by García-Ferreira, Miyazaki and Nogura. The topic is discussed in the framework of a result of Katětov about complete normality of products. Also, some applications for products with a countably compact factor are demonstrated as well.
We extend van Mill-Wattel's results and show that each countably compact completely regular space with a continuous selection on couples is suborderable. The result extends also to pseudocompact spaces if they are either scattered, first countable, or connected. An infinite pseudocompact topological group with such a continuous selection is homeomorphic to the Cantor set. A zero-selection is a selection on the hyperspace of closed sets which chooses always an isolated point of a set. Extending Fujii-Nogura...
We answer a question of van Mill and Wattel by showing that there is a separable locally compact space which admits a continuous weak selection but is not weakly orderable. Furthermore, we show that a separable space which admits a continuous weak selection can be covered by two weakly orderable spaces. Finally, we give a partial answer to a question of Gutev and Nogura by showing that a separable space which admits a continuous weak selection admits a continuous selection for all finite sets.
Every (continuous) selection for the non-empty 2-point subsets of a space X naturally defines an interval-like topology on X. In the present paper, we demonstrate that, for a second-countable zero-dimensional space X, this topology may fail to be first-countable at some (or, even any) point of X. This settles some problems stated in [7].
We show that if is an uncountable AD (almost disjoint) family of subsets of then the space does not admit a continuous selection; moreover, if is maximal then does not even admit a continuous selection on pairs, answering thus questions of T. Nogura.