On Eberlein compactifications of metrizable spaces
We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.
We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.
A.V. Arkhangel’skii asked that, is it true that every space of countable tightness is homeomorphic to a subspace (to a closed subspace) of where is Lindelöf? denotes the space of all continuous real-valued functions on a space with the topology of pointwise convergence. In this note we show that the two arrows space is a counterexample for the problem by showing that every separable compact linearly ordered topological space is second countable if it is homeomorphic to a subspace of ...
We apply elementary substructures to characterize the space for Corson-compact spaces. As a result, we prove that a compact space is Corson-compact, if can be represented as a continuous image of a closed subspace of , where is compact and denotes the canonical Lindelöf space of cardinality with one non-isolated point. This answers a question of Archangelskij [2].
It is shown that no infinite-dimensional Banach space can have a weakly K-analytic Hamel basis. As consequences, (i) no infinite-dimensional weakly analytic separable Banach space E has a Hamel basis C-embedded in E(weak), and (ii) no infinite-dimensional Banach space has a weakly pseudocompact Hamel basis. Among other results, it is also shown that there exist noncomplete normed barrelled spaces with closed discrete Hamel bases of arbitrarily large cardinality.
For a subset of the real line , Hattori space is a topological space whose underlying point set is the reals and whose topology is defined as follows: points from are given the usual Euclidean neighborhoods while remaining points are given the neighborhoods of the Sorgenfrey line. In this paper, among other things, we give conditions on which are sufficient and necessary for to be respectively almost Čech-complete, Čech-complete, quasicomplete, Čech-analytic and weakly separated (in...
In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces and , where and denote the Hilbert cube and a Cantor set, respectively.
For a non-isolated point of a topological space let be the smallest cardinality of a family of infinite subsets of such that each neighborhood of contains a set . We prove that (a) each infinite compact Hausdorff space contains a non-isolated point with ; (b) for each point with there is an injective sequence in that -converges to for some meager filter on ; (c) if a functionally Hausdorff space contains an -convergent injective sequence for some meager filter...
We construct an example of a Banach space E such that every weakly compact subset of E is bisequential and E contains a weakly compact subset which cannot be embedded in a Hilbert space equipped with the weak topology. This answers a question of Nyikos.
Properties similar to countable fan-tightness are introduced and compared to countable tightness and countable fan-tightness. These properties are also investigated with respect to function spaces and certain classes of continuous mappings.
In [7], M. Levin proved that the set of all Bing maps of a compact metric space to the unit interval is a dense -subset of the space of all maps. In [6], J. Krasinkiewicz independently proved that the set of all Bing maps of a compact metric space to an n-dimensional manifold (n ≥ 1) is a dense -subset of the space of maps. In [9], J. Song and E. D. Tymchatyn, solving some problems of J. Krasinkiewicz ([6]), proved that the set of all Bing maps of a compact metric space to a nondegenerate connected...