A Product Theorem in Dimension.
Answering a 1982 question of Sidney A. Morris, we construct a topological group G and a subspace X such that (i) G is algebraically free over X, (ii) G is relatively free over X, that is, every continuous mapping from X to G extends to a unique continuous endomorphism of G, and (iii) G is not a varietal free topological group on X in any variety of topological groups.
The universality problem focuses on finding universal spaces in classes of topological spaces. Moreover, in “Universal spaces and mappings” by S. D. Iliadis (2005), an important method of constructing such universal elements in classes of spaces is introduced and explained in details. Simultaneously, in “A topological dimension greater than or equal to the classical covering dimension” by D. N. Georgiou, A. C. Megaritis and F. Sereti (2017), new topological dimension is introduced and studied, which...
We prove a Z-set unknotting theorem for Nöbeling spaces.
We prove the addition and subspace theorems for asymptotic large inductive dimension. We investigate a transfinite extension of this dimension and show that it is trivial.
A countable CW complex K is quasi-finite (as defined by A. Karasev) if for every finite subcomplex M of K there is a finite subcomplex e(M) such that any map f: A → M, where A is closed in a separable metric space X satisfying XτK, has an extension g: X → e(M). Levin's results imply that none of the Eilenberg-MacLane spaces K(G,2) is quasi-finite if G ≠ 0. In this paper we discuss quasi-finiteness of all Eilenberg-MacLane spaces. More generally, we deal with CW complexes with finitely many...
Using certain ideas connected with the entropy theory, several kinds of dimensions are introduced for arbitrary topological spaces. Their properties are examined, in particular, for normal spaces and quasi-discrete ones. One of the considered dimensions coincides, on these spaces, with the Čech-Lebesgue dimension and the height dimension of posets, respectively.
We prove an extension of the well-known combinatorial-topological lemma of E. Sperner to the case of infinite-dimensional cubes. It is obtained as a corollary to an infinitary extension of the Lebesgue Covering Dimension Theorem.