Previous Page 2

Displaying 21 – 40 of 40

Showing per page

Estimations de dimensions de Minkowski dans l’espace des groupes marqués

Luc Guyot (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Dans cet article, on montre que l’espace des groupes marqués est un sous-espace fermé d’un ensemble de Cantor dont la dimension de Hausdorff est infinie. On prouve que la dimension de Minkowski de cet espace est infinie en exhibant des sous-ensembles de groupes marqués à petite simplification dont les dimensions de Minkowski sont arbitrairement grandes. On donne une estimation des dimensions de Minkowski de sous-espaces de groupes à un relateur. On démontre enfin que les dimensions de Minkowski...

Exactly two-to-one maps from continua onto arc-continua

Wojciech Dębski, J. Heath, J. Mioduszewski (1996)

Fundamenta Mathematicae

Continuing studies on 2-to-1 maps onto indecomposable continua having only arcs as proper non-degenerate subcontinua - called here arc-continua - we drop the hypothesis of tree-likeness, and we get some conditions on the arc-continuum image that force any 2-to-1 map to be a local homeomorphism. We show that any 2-to-1 map from a continuum onto a local Cantor bundle Y is either a local homeomorphism or a retraction if Y is orientable, and that it is a local homeomorphism if Y is not orientable.

Exactly two-to-one maps from continua onto some tree-like continua

Wojciech Dębski, J. Heath, J. Mioduszewski (1992)

Fundamenta Mathematicae

It is known that no dendrite (Gottschalk 1947) and no hereditarily indecomposable tree-like continuum (J. Heath 1991) can be the image of a continuum under an exactly 2-to-1 (continuous) map. This paper enlarges the class of tree-like continua satisfying this property, namely to include those tree-like continua whose nondegenerate proper subcontinua are arcs. This includes all Knaster continua and Ingram continua. The conjecture that all tree-like continua have this property, stated by S. Nadler...

Extending generalized Whitney maps

Ivan Lončar (2017)

Archivum Mathematicum

For metrizable continua, there exists the well-known notion of a Whitney map. If X is a nonempty, compact, and metric space, then any Whitney map for any closed subset of 2 X can be extended to a Whitney map for 2 X [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.

Extension theory of infinite symmetric products

Jerzy Dydak (2004)

Fundamenta Mathematicae

We present an approach to cohomological dimension theory based on infinite symmetric products and on the general theory of dimension called the extension dimension. The notion of the extension dimension ext-dim(X) was introduced by A. N. Dranishnikov [9] in the context of compact spaces and CW complexes. This paper investigates extension types of infinite symmetric products SP(L). One of the main ideas of the paper is to treat ext-dim(X) ≤ SP(L) as the fundamental concept of cohomological dimension...

External Characterization of I-Favorable Spaces

Valov, Vesko (2011)

Mathematica Balkanica New Series

1991 AMS Math. Subj. Class.:Primary 54C10; Secondary 54F65We provide both a spectral and an internal characterizations of arbitrary !-favorable spaces with respect to co-zero sets. As a corollary we establish that any product of compact !-favorable spaces with respect to co-zero sets is also !-favorable with respect to co-zero sets. We also prove that every C* -embedded !-favorable with respect to co-zero sets subspace of an extremally disconnected space is extremally disconnected.

Extraresolvability and cardinal arithmetic

Ofelia Teresa Alas, Salvador García-Ferreira, Artur Hideyuki Tomita (1999)

Commentationes Mathematicae Universitatis Carolinae

Following Malykhin, we say that a space X is extraresolvable if X contains a family 𝒟 of dense subsets such that | 𝒟 | > Δ ( X ) and the intersection of every two elements of 𝒟 is nowhere dense, where Δ ( X ) = min { | U | : U is a nonempty open subset of X } is the dispersion character of X . We show that, for every cardinal κ , there is a compact extraresolvable space of size and dispersion character 2 κ . In connection with some cardinal inequalities, we prove the equivalence of the following statements: 1) 2 κ < 2 κ + , 2) ( κ + ) κ is extraresolvable and...

Extreme topological measures

S. V. Butler (2006)

Fundamenta Mathematicae

It has been an open question since 1997 whether, and under what assumptions on the underlying space, extreme topological measures are dense in the set of all topological measures on the space. The present paper answers this question. The main result implies that extreme topological measures are dense on a variety of spaces, including spheres, balls and projective planes.

Currently displaying 21 – 40 of 40

Previous Page 2