Property Q.
Let be a continuum. Two maps are said to be pseudo-homotopic provided that there exist a continuum , points and a continuous function such that for each , and . In this paper we prove that if is the pseudo-arc, is one-to-one and is pseudo-homotopic to , then . This theorem generalizes previous results by W. Lewis and M. Sobolewski.
In this paper, we deal with the study of quasi-homeomorphisms, the Goldman prime spectrum and the Jacobson prime spectrum of a commutative ring. We prove that, if is a quasi-homeomorphism, a sober space and a continuous map, then there exists a unique continuous map such that . Let be a -space, the injection of onto its sobrification . It is shown, here, that , where is the set of all locally closed points of . Some applications are also indicated. The Jacobson prime spectrum...
Let G ⊂ Homeo(E) be a group of homeomorphisms of a topological space E. The class of an orbit O of G is the union of all orbits having the same closure as O. Let E/G̃ be the space of classes of orbits, called the quasi-orbit space. We show that every second countable T₀-space Y is a quasi-orbit space E/G̃, where E is a second countable metric space. The regular part X₀ of a T₀-space X is the union of open subsets homeomorphic to ℝ or to 𝕊¹. We give a characterization of the spaces X with finite...
As a special case of the general question - “What information can be obtained about the dimension of a subset of by looking at its orthogonal projections into hyperplanes?” - we construct a Cantor set in each of whose projections into 2-planes is 1-dimensional. We also consider projections of Cantor sets in whose images contain open sets, expanding on a result of Borsuk.
Let X be a set with a symmetric kernel d (not necessarily a distance). The space (X,d) is said to have the weak (resp. strong) covering property of degree ≤ m [briefly prf(m) (resp. prF(m))], if, for each family B of closed balls of (X,d) with radii in a decreasing sequence (resp. with bounded radii), there is a subfamily, covering the center of each element of B, and of order ≤ m (resp. splitting into m disjoint families). Since Besicovitch, covering properties are known to be the main tool for...