Displaying 1161 – 1180 of 1234

Showing per page

Weak orderability of second countable spaces

Valentin Gutev (2007)

Fundamenta Mathematicae

We demonstrate that a second countable space is weakly orderable if and only if it has a continuous weak selection. This provides a partial positive answer to a question of van Mill and Wattel.

Weak orderability of some spaces which admit a weak selection

Camillo Costantini (2006)

Commentationes Mathematicae Universitatis Carolinae

We show that if a Hausdorff topological space X satisfies one of the following properties: a) X has a countable, discrete dense subset and X 2 is hereditarily collectionwise Hausdorff; b) X has a discrete dense subset and admits a countable base; then the existence of a (continuous) weak selection on X implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.

Weak selections and weak orderability of function spaces

Valentin Gutev (2010)

Czechoslovak Mathematical Journal

It is proved that for a zero-dimensional space X , the function space C p ( X , 2 ) has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if X is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space E , the function space C p ( X , E ) is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides a partial...

Weakly infinite-dimensional compactifications and countable-dimensional compactifications

Takashi Kimura, Chieko Komoda (2008)

Commentationes Mathematicae Universitatis Carolinae

In this paper we give a characterization of a separable metrizable space having a metrizable S-weakly infinite-dimensional compactification in terms of a special metric. Moreover, we give two characterizations of a separable metrizable space having a metrizable countable-dimensional compactification.

Whitney maps-a non-metric case

Janusz Charatonik, Włodzimierz Charatonik (2000)

Colloquium Mathematicae

It is shown that there is no Whitney map on the hyperspace 2 X for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).

Whitney Preserving Maps onto Dendrites

Eiichi Matsuhashi (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

We prove the following results. (i) Let X be a continuum such that X contains a dense arc component and let D be a dendrite with a closed set of branch points. If f:X → D is a Whitney preserving map, then f is a homeomorphism. (ii) For each dendrite D' with a dense set of branch points there exist a continuum X' containing a dense arc component and a Whitney preserving map f':X' → D' such that f' is not a homeomorphism.

κ-compactness, extent and the Lindelöf number in LOTS

David Buhagiar, Emmanuel Chetcuti, Hans Weber (2014)

Open Mathematics

We study the behaviour of ℵ-compactness, extent and Lindelöf number in lexicographic products of linearly ordered spaces. It is seen, in particular, that for the case that all spaces are bounded all these properties behave very well when taking lexicographic products. We also give characterizations of these notions for generalized ordered spaces.

Currently displaying 1161 – 1180 of 1234