Base change functors in the -stable homotopy category.
Via the Bousfield-Gugenheim realization functor, and starting from the Brown-Szczarba model of a function space, we give a functorial framework to describe basic objects and maps concerning the rational homotopy type of function spaces and its path components.
Let be any compact simply-connected oriented -dimensional smooth manifold and let be any field. We show that the Gerstenhaber algebra structure on the Hochschild cohomology on the singular cochains of , , extends to a Batalin-Vilkovisky algebra. Such Batalin-Vilkovisky algebra was conjectured to exist and is expected to be isomorphic to the Batalin-Vilkovisky algebra on the free loop space homology on , introduced by Chas and Sullivan. We also show that the negative cyclic cohomology ...
We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
A morphism of a category which is simultaneously an epimorphism and a monomorphism is called a bimorphism. The category is balanced if every bimorphism is an isomorphism. In the paper properties of bimorphisms of several categories are discussed (pro-homotopy, shape, proper homotopy) and the question of those categories being balanced is raised. Our most interesting result is that a bimorphism f:X → Y of is an isomorphism if Y is movable. Recall that is the full subcategory of consisting of...
It is proved for Abelian groups that the Reidemeister coincidence number of two endomorphisms ϕ and ψ is equal to the number of coincidence points of ϕ̂ and ψ̂ on the unitary dual, if the Reidemeister number is finite. An affirmative answer to the bitwisted Dehn conjugacy problem for almost polycyclic groups is obtained. Finally, we explain why the Reidemeister numbers are always infinite for injective endomorphisms of Baumslag-Solitar groups.