Rational toral ranks in certain algebras.
Notre but dans ce texte est de montrer le résultat suivant : Si est un C.W. complexe, simplement connexe, de type fini, avec finiment engendré comme algèbre de Lie, alors, à équivalence d’homotopie rationnelle près, il n’existe qu’un nombre fini de rétractes de . L’existence d’un nombre fini de rétractes a été obtenue par L. Renner en 1990 dans le cas où est finiment engendré en tant que -algèbre. Notre résultat élargit ainsi le cadre des espaces n’ayant, à équivalence d’homotopie rationnelle...
We describe, for any compact connected Lie group G and any prime p, the monoid of self maps → which are rational equivalences. Here, denotes the p-adic completion of the classifying space of G. Among other things, we show that two such maps are homotopic if and only if they induce the same homomorphism in rational cohomology, if and only if their restrictions to the classifying space of the maximal torus of G are homotopic.
This paper shows that the simplicial type of a finite simplicial complex is determined by its algebra of polynomial functions on the baricentric coordinates with coefficients in any integral domain. The link between and is done through certain admissible matrix associated to in a natural way. This result was obtained for the real numbers by I. V. Savel’ev [5], using methods of real algebraic geometry. D. Kan and E. Miller had shown in [2] that determines the homotopy type of the polyhedron...
Il est démontré que toute a.d.g.c. ayant un modèle minimal de Sullivan de type fini peut être représentée par une certaine algèbre de Lie différentielle graduée de dérivations. En particulier on peut ainsi représenter le type d’homotopie rationnelle d’un espace topologique.
On sait qu’il y a 144 classes d’homotopies d’applications de dans lui-même dont la restriction à est homotope à l’identité: ce sont des exemples d’applications qui induisent l’identité en homologie et en homotopie. Plus généralement, soit un complexe de Poincaré 1-connexe de dimension , qui n’a pas le type d’homotopie rationnelle de : si est formel, nous montrons que le groupe des classes d’homotopies d’applications de dans , dont la restriction au -squelette est homotope à l’identité,...
We define a BV-structure on the Hochschild cohomology of a unital, associative algebra with a symmetric, invariant and non-degenerate inner product. The induced Gerstenhaber algebra is the one described in Gerstenhaber’s original paper on Hochschild-cohomology. We also prove the corresponding theorem in the homotopy case, namely we define the BV-structure on the Hochschild-cohomology of a unital -algebra with a symmetric and non-degenerate -inner product.