The Stable Topological-hyperbolic Space Form Problem for Complete Manifolds of Finite Volume.
In this abstract we present an explicit formula for a cycle representing the top class of certain elliptic spaces, including the homogeneous spaces. For thet, we shall rely on the connection between Sullivan's theory of minimal models and Rational homotopy theory for which [3], [6] and [10] are standard references.
We show that the Vietoris system of a space is isomorphic to a strong expansion of that space in the Steenrod homotopy category, and from this we derive a simple description of strong homology. It is proved that in ZFC strong homology does not have compact supports, and that enforcing compact supports by taking limits leads to a homology functor that does not factor over the strong shape category. For compact Hausdorff spaces strong homology is proved to be isomorphic to Massey's homology.
A phantom mapping h from a space Z to a space Y is a mapping whose restrictions to compact subsets are homotopic to constant mappings. If the mapping h is not homotopic to a constant mapping, one speaks of an essential phantom mapping. The definition of (essential) phantom pairs of mappings is analogous. In the study of phantom mappings (phantom pairs of mappings), of primary interest is the case when Z and Y are CW-complexes. In a previous paper it was shown that there are no essential phantom...