Noeuds et structures de contact en dimension 3
En définissant une nouvelle classe de nœuds dans les variétés de dimension 3, on obtient une démonstration plus classique du théorème de rigidité virtuelle des variétés hyperboliques de D. Gabai.
Damien Gaboriau a montré récemment que les nombres de Betti des feuilletages mesurés à feuilles contractiles sont des invariants de la relation d’équivalence associée. Sorin Popa a utilisé ce résultat joint à des propriétés de rigidité des facteurs de type II pour en déduire l’existence de facteurs de type II dont le groupe fondamental est trivial.
For a knot in the 3-sphere and a regular representation of its group into SU(2) we construct a non abelian Reidemeister torsion form on the first twisted cohomology group of the knot exterior. This non abelian Reidemeister torsion form provides a volume form on the SU(2)-representation space of . In another way, we construct using Casson’s original construction a natural volume form on the SU(2)-representation space of . Next, we compare these two apparently different points of view on the representation...
We build the flows of non singular Morse-Smale systems on the 3-sphere from its round handle decomposition. We show the existence of flows corresponding to the same link of periodic orbits that are non equivalent. So, the link of periodic orbits is not in a 1-1 correspondence with this type of flows and we search for other topological invariants such as the associated dual graph.
In this article we study non-abelian extensions of a Lie group modeled on a locally convex space by a Lie group . The equivalence classes of such extension are grouped into those corresponding to a class of so-called smooth outer actions of on . If is given, we show that the corresponding set of extension classes is a principal homogeneous space of the locally smooth cohomology group . To each a locally smooth obstruction class in a suitably defined cohomology group is defined....
Let be a dg algebra over and let be a dg -bimodule. We show that under certain technical hypotheses on , a noncommutative analog of the Hodge-to-de Rham spectral sequence starts at the Hochschild homology of the derived tensor product and converges to the Hochschild homology of . We apply this result to bordered Heegaard Floer theory, giving spectral sequences associated to Heegaard Floer homology groups of certain branched and unbranched double covers.
The Evens-Lu-Weinstein representation (Q A, D) for a Lie algebroid A on a manifold M is studied in the transitive case. To consider at the same time non-oriented manifolds as well, this representation is slightly modified to (Q Aor, Dor) by tensoring by orientation flat line bundle, Q Aor=QA⊗or (M) and D or=D⊗∂Aor. It is shown that the induced cohomology pairing is nondegenerate and that the representation (Q Aor, Dor) is the unique (up to isomorphy) line representation for which the top group of...