Circle Actions on Homotopy Spheres Bounding Generalized Plumbing Manifoids.
We present a direct analytic treatment of the Rokhlin congruence formula R2 by calculating the adiabatic limit of -invariants of Dirac operators on circle bundles. Extensions to higher dimensions are obtained.
Summary: Arrays of numbers may be written not only on a line (= ``a vector'') or in the plain (= ``a matrix'') but also on a circle (= ``a circular vector''), on a torus (= ``a toroidal matrix'') etc. In the latter case, the immanent index-rotation ambiguity converts the standard ``scalar'' product into a binary operation with several interesting properties.
Le but de ce travail est double : d’une part, généraliser la construction des classes exotiques pour l’appliquer à d’autres problèmes géométriques que ceux issus des -structures ; d’autre part, préciser, grâce à la notion de -connexité, remplaçant avantageusement les formules de dérivation utilisées précédemment, l’argument d’invariance homotopique permettant d’obtenir des théorèmes de rigidité, montrant simultanément pourquoi la seule connexité des ensembles de connexions considérés ne suffit...
This work is a contribution to study residues of real characteristic classes of vector bundles on which act compact Lie groups. By using the Cech-De Rham complex, the realisation of the usual Thom isomorphism permites us to illustrate localisation techniques of some topological invariants.