An analytic interpretation of real dimension subgroups.
These notes accompany some lectures given at the autumn school “Tresses in Pau” in October 2009. The abelian Reidemeister torsion for -manifolds, and its refinements by Turaev, are introduced. Some applications, including relations between the Reidemeister torsion and other classical invariants, are surveyed.
Using the notion of relative presentation due to Bogley and Pride, we give a new proof of a theorem of Prishchepov on the asphericity of certain symmetric presentations of groups. Then we obtain further results and applications to topology of low-dimensional manifolds.
On étudie les morphismes d’un groupe infini discret dans un groupe de Lie contenu dans le groupe des difféomorphismes de la droite réelle. À un tel morphisme , on associe deux ensembles de “bouts” de “dans la direction” . On calcule le nombre de bouts dans plusieurs situations. Dans le cas particulier où est de type fini et où est le groupe des translations, n’a qu’un bout dans la direction si, et seulement si, ils vérifient la propriété de Bieri-Neumann-Strebel.