Characteristic for reflexive relations.
We present an elementary description of Khovanov's homology of tangles [K2], in the spirit of Viro's paper [V]. The formulation here is over the polynomial ring ℤ[c], unlike [K2] where the theory was presented over the integers only.
On décrit un exemple de variété de contact universellement tendue qui devient vrillée après une chirurgie de Dehn admissible sur un entrelacs transverse.
The main result of the present paper is a classification theorem for finite-sheeted covering mappings over connected paracompact spaces. This theorem is a generalization of the classical classification theorem for covering mappings over a connected locally pathwise connected semi-locally 1-connected space in the finite-sheeted case. To achieve the result we use the classification theorem for overlay structures which was recently proved by S. Mardesic and V. Matijevic (Theorems 1 and 4 of [5]).
We introduce a new braid-theoretic framework with which to understand the Legendrian and transversal classification of knots, namely a Legendrian Markov Theorem without Stabilization which induces an associated transversal Markov Theorem without Stabilization. We establish the existence of a nontrivial knot-type specific Legendrian and transversal MTWS by enhancing the Legendrian mountain range for the (2,3)-cable of a (2,3)-torus knot provided by Etnyre and Honda, and showing that elementary negative...