Noncommutative rational functions and boundary links.
A conjecture of [swTAMS] states that a knot is nonfibered if and only if its infinite cyclic cover has uncountably many finite covers. We prove the conjecture for a class of knots that includes all knots of genus 1, using techniques from symbolic dynamics.
We show that the subgroup of the knot concordance group generated by links of isolated complex singularities intersects the subgroup of algebraically slice knots in an infinite rank subgroup.
Let Y be a closed 2-dimensional disk or a 2-sphere. We consider a simple, d-sheeted branched covering π: X → Y. We fix a base point A₀ in Y (A₀ ∈ ∂Y if Y is a disk). We consider the homeomorphisms h of Y which fix ∂Y pointwise and lift to homeomorphisms ϕ of X-the automorphisms of π. We prove that if Y is a sphere then every such ϕ is isotopic by a fiber-preserving isotopy to an automorphism which fixes the fiber pointwise. If Y is a disk, we describe explicitly a small set of automorphisms of...