Relations between the Jones and Q polynomials for 2-bridge and 3-braid links.
We give some criteria for the equisingularity of families of affine plane curves.
Dans cette note, nous reformulons et nous démontrons un lemme dont l’énoncé et la démonstration donnés dans un article de R.H. Fox sur les revêtements ramifiés, comportent un certain nombre d’imprécisions. Nous établissons aussi deux théorèmes qui sont utilisés pour calculer le groupe fondamental de l’antécédent, au sens de Fox, d’un revêtement ramifié lorsque celui-ci est un complexe homogène sans bord de dimension ou une -variété combinatoire sans bord.
The paper studies the first homology of finite regular branched coverings of a universal Borromean orbifold called B 4,4,4ℍ3. We investigate the irreducible components of the first homology as a representation space of the finite covering transformation group G. This gives information on the first betti number of finite coverings of general 3-manifolds by the universality of B 4,4,4. The main result of the paper is a criterion in terms of the irreducible character whether a given irreducible representation...
We present two different representations of (1,1)-knots and study some connections between them. The first representation is algebraic: every (1,1)-knot is represented by an element of the pure mapping class group of the twice punctured torus PMCG₂(T). Moreover, there is a surjective map from the kernel of the natural homomorphism Ω:PMCG₂(T) → MCG(T) ≅ SL(2,ℤ), which is a free group of rank two, to the class of all (1,1)-knots in a fixed lens space. The second representation is parametric: every...
We describe the action of the Kauffman bracket skein algebra on some vector spaces that arise as relative Kauffman bracket skein modules of tangles in the punctured torus. We show how this action determines the Reshetikhin-Turaev representation of the punctured torus. We rephrase our results to describe the quantum group quantization of the moduli space of flat SU(2)-connections on the punctured torus with fixed trace of the holonomy around the boundary.
It is proved that the Freudenthal compactification of an open, connected, oriented 3-manifold is a 3-fold branched covering of S3, and in some cases, a 2-fold branched covering of S3. The branching set is a locally finite disjoint union of strings.