Isolated critical points of mappings from R4 to R2 and a natural splitting of the Milnor number of a classical fibered link. Part I: Basic theory; examples.
We provide a classification of isometries of systolic complexes corresponding to the classification of isometries of CAT(0)-spaces. We prove that any isometry of a systolic complex either fixes the barycentre of some simplex (elliptic case) or stabilizes a thick geodesic (hyperbolic case). This leads to an alternative proof of the fact that finitely generated abelian subgroups of systolic groups are undistorted.