On finite subgroups of groups of type VF.
We prove that the semistability growth of hyperbolic groups is linear, which implies that hyperbolic groups which are sci (simply connected at infinity) have linear sci growth. Based on the linearity of the end-depth of finitely presented groups we show that the linear sci is preserved under amalgamated products over finitely generated one-ended groups. Eventually one proves that most non-uniform lattices have linear sci.
The following results are proved: The center of any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group is trivial; Any finite index subgroup of an irreducible, infinite, nonaffine Coxeter group cannot be expressed as a product of two nontrivial subgroups. These two theorems imply a unique decomposition theorem for a class of Coxeter groups. We also prove that the orbit of each element other than the identity under the conjugation action in an irreducible, infinite, nonaffine...