The edge-minimal polyhedral maps of Euler characteristic .
We prove the “End Curve Theorem,” which states that a normal surface singularity with rational homology sphere link is a splice quotient singularity if and only if it has an end curve function for each leaf of a good resolution tree. An “end curve function” is an analytic function whose zero set intersects in the knot given by a meridian curve of the exceptional curve corresponding to the given leaf. A “splice quotient singularity” is described by giving an explicit set of equations describing...
Let A, B be invertible, non-commuting elements of a ring R. Suppose that A-1 is also invertible and that the equation [B,(A-1)(A,B)] = 0 called the fundamental equation is satisfied. Then this defines a representation of the algebra ℱ = A, B | [B,(A-1)(A,B)] = 0. An invariant R-module can then be defined for any diagram of a (virtual) knot or link. This halves the number of previously known relations and allows us to give a complete solution in the case when R is the quaternions.
We show that the Fukumoto-Furuta invariant for a rational homology 3-sphere M, which coincides with the Neumann-Siebenmann invariant for a Seifert rational homology 3-sphere, is the same as the Ozsváth-Szabó's correction term derived from the Heegaard Floer homology theory if M is a spherical 3-manifold.
This paper uses combinatorial group theory to help answer some long-standing questions about the genera of orientable surfaces that carry particular kinds of regular maps. By classifying all orientably-regular maps whose automorphism group has order coprime to , where is the genus, all orientably-regular maps of genus for prime are determined. As a consequence, it is shown that orientable surfaces of infinitely many genera carry no regular map that is chiral (irreflexible), and that orientable...
Using the path lattice cohomology we provide a conceptual topological characterization of the geometric genus for certain complex normal surface singularities with rational homology sphere links, which is uniformly valid for all superisolated and Newton non-degenerate hypersurface singularities.
A survey of splitting theorems for abstract groups and their applications. Topics covered include preliminaries, early results, Bass-Serre theory, the structure of G-trees, Serre's applications to SL2 and length functions. Stallings' theorem, results about accessibility and bounds for splittability. Duality groups and pairs; results of Eckmann and collaborators on PD2 groups. Relative ends, the JSJ theorems and the splitting results of Kropholler and Roller on PDn groups. Notions of quasi-isometry,...