Displaying 41 – 60 of 202

Showing per page

The end curve theorem for normal complex surface singularities

Walter D. Neumann, Jonathan Wahl (2010)

Journal of the European Mathematical Society

We prove the “End Curve Theorem,” which states that a normal surface singularity ( X , o ) with rational homology sphere link Σ is a splice quotient singularity if and only if it has an end curve function for each leaf of a good resolution tree. An “end curve function” is an analytic function ( X , o ) ( , 0 ) whose zero set intersects Σ in the knot given by a meridian curve of the exceptional curve corresponding to the given leaf. A “splice quotient singularity” ( X , o ) is described by giving an explicit set of equations describing...

The equation [B,(A-1)(A,B)] = 0 and virtual knots and links

Stephen Budden, Roger Fenn (2004)

Fundamenta Mathematicae

Let A, B be invertible, non-commuting elements of a ring R. Suppose that A-1 is also invertible and that the equation [B,(A-1)(A,B)] = 0 called the fundamental equation is satisfied. Then this defines a representation of the algebra ℱ = A, B | [B,(A-1)(A,B)] = 0. An invariant R-module can then be defined for any diagram of a (virtual) knot or link. This halves the number of previously known relations and allows us to give a complete solution in the case when R is the quaternions.

The Fukumoto-Furuta and the Ozsváth-Szabó invariants for spherical 3-manifolds

Masaaki Ue (2009)

Banach Center Publications

We show that the Fukumoto-Furuta invariant for a rational homology 3-sphere M, which coincides with the Neumann-Siebenmann invariant for a Seifert rational homology 3-sphere, is the same as the Ozsváth-Szabó's correction term derived from the Heegaard Floer homology theory if M is a spherical 3-manifold.

The genera, reflexibility and simplicity of regular maps

Marston Conder, Jozef Širáň, Thomas Tucker (2010)

Journal of the European Mathematical Society

This paper uses combinatorial group theory to help answer some long-standing questions about the genera of orientable surfaces that carry particular kinds of regular maps. By classifying all orientably-regular maps whose automorphism group has order coprime to g - 1 , where g is the genus, all orientably-regular maps of genus p + 1 for p prime are determined. As a consequence, it is shown that orientable surfaces of infinitely many genera carry no regular map that is chiral (irreflexible), and that orientable...

The geometric genus of hypersurface singularities

András Némethi, Baldur Sigurdsson (2016)

Journal of the European Mathematical Society

Using the path lattice cohomology we provide a conceptual topological characterization of the geometric genus for certain complex normal surface singularities with rational homology sphere links, which is uniformly valid for all superisolated and Newton non-degenerate hypersurface singularities.

The geometry of abstract groups and their splittings.

Charles Terence Clegg Wall (2003)

Revista Matemática Complutense

A survey of splitting theorems for abstract groups and their applications. Topics covered include preliminaries, early results, Bass-Serre theory, the structure of G-trees, Serre's applications to SL2 and length functions. Stallings' theorem, results about accessibility and bounds for splittability. Duality groups and pairs; results of Eckmann and collaborators on PD2 groups. Relative ends, the JSJ theorems and the splitting results of Kropholler and Roller on PDn groups. Notions of quasi-isometry,...

Currently displaying 41 – 60 of 202