Slicing Doubles of Knots in Homology 3-Spheres.
R.A. Litherland (1979)
Inventiones mathematicae
S.M. Gersten, H. Short (1991)
Inventiones mathematicae
Frigerio, Roberto, Martelli, Bruno, Petronio, Carlo (2004)
Experimental Mathematics
L.M. Lopez (1993)
Mathematische Zeitschrift
Dean, John C. (2003)
Algebraic & Geometric Topology
Martin Scharlemann (1985)
Inventiones mathematicae
Michael Heusener (1994)
Mathematische Annalen
Michael L. Mihalik (1987)
Mathematische Zeitschrift
Kopteva, N.V. (2003)
Sibirskij Matematicheskij Zhurnal
W.B.R. Lickorish, K.C. Millett (1986)
Commentarii mathematici Helvetici
Allen Hatcher (1992)
Annales de l'institut Fourier
Families of codimension-one foliations and laminations are constructed in certain 3-manifolds, with the property that their transverse intersection with the boundary torus of the manifold consists of parallel curves whose slope varies continuously with certain parameters in the construction. The 3-manifolds are 2-bridge knot complements and punctured-torus bundles.
Marcel Hagelberg, Rubén A. Hidalgo (1997)
Revista Matemática Iberoamericana
In this note we construct examples of geometric 3-orbifolds with (orbifold) fundamental group isomorphic to a (Z-extension of a) generalized Coxeter group. Some of these orbifolds have either euclidean, spherical or hyperbolic structure. As an application, we obtain an alternative proof of theorem 1 of Hagelberg, Maclaughlan and Rosenberg in [5]. We also obtain a similar result for generalized Coxeter groups.
W.B.R. Lickorish, M.B. Thistlethwaite (1988)
Commentarii mathematici Helvetici
Hitoshi Murakami (1985)
Mathematische Annalen
Sadayoshi Kojima, Masyuki Yamasaki (1979)
Inventiones mathematicae
Kyung Whan Kwun (1984)
Colloquium Mathematicae
Todea, Mihaela (2002)
Acta Universitatis Apulensis. Mathematics - Informatics
Ulrich Hirsch (1980)
Mathematische Annalen
Otera, Daniele Ettore (2008)
Acta Universitatis Apulensis. Mathematics - Informatics
Zimmermann, B.P. (2005)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]