Previous Page 7

Displaying 121 – 127 of 127

Showing per page

Cyclic branched coverings and homology 3-spheres with large group actions

Bruno P. Zimmermann (2004)

Fundamenta Mathematicae

We show that, if the covering involution of a 3-manifold M occurring as the 2-fold branched covering of a knot in the 3-sphere is contained in a finite nonabelian simple group G of diffeomorphisms of M, then M is a homology 3-sphere and G isomorphic to the alternating or dodecahedral group 𝔸₅ ≅ PSL(2,5). An example of such a 3-manifold is the spherical Poincaré sphere. We construct hyperbolic analogues of the Poincaré sphere. We also give examples of hyperbolic ℤ₂-homology 3-spheres with PSL(2,q)-actions,...

Cyclic branched coverings of 2-bridge knots.

Alberto Cavicchioli, Beatrice Ruini, Fulvia Spaggiari (1999)

Revista Matemática Complutense

In this paper we study the connections between cyclic presentations of groups and the fundamental group of cyclic branched coverings of 2-bridge knots. Then we show that the topology of these manifolds (and knots) arises, in a natural way, from the algebraic properties of such presentations.

Cyclic branched coverings of knots and homology spheres.

Francisco González-Acuña, Hamish Short (1991)

Revista Matemática de la Universidad Complutense de Madrid

We study cyclic coverings of S3 branched over a knot, and study conditions under which the covering is a homology sphere. We show that the sequence of orders of the first homology groups for a given knot is either periodic of tends to infinity with the order of the covering, a result recently obtained independently by Riley. From our computations it follows that, if surgery on a knot k with less than 10 crossings produces a manifold with cyclic fundamental group, then k is a torus knot.

Currently displaying 121 – 127 of 127

Previous Page 7