Cyclic actions on - and -bundles over
We show that, if the covering involution of a 3-manifold M occurring as the 2-fold branched covering of a knot in the 3-sphere is contained in a finite nonabelian simple group G of diffeomorphisms of M, then M is a homology 3-sphere and G isomorphic to the alternating or dodecahedral group 𝔸₅ ≅ PSL(2,5). An example of such a 3-manifold is the spherical Poincaré sphere. We construct hyperbolic analogues of the Poincaré sphere. We also give examples of hyperbolic ℤ₂-homology 3-spheres with PSL(2,q)-actions,...
In this paper we study the connections between cyclic presentations of groups and the fundamental group of cyclic branched coverings of 2-bridge knots. Then we show that the topology of these manifolds (and knots) arises, in a natural way, from the algebraic properties of such presentations.
We study cyclic coverings of S3 branched over a knot, and study conditions under which the covering is a homology sphere. We show that the sequence of orders of the first homology groups for a given knot is either periodic of tends to infinity with the order of the covering, a result recently obtained independently by Riley. From our computations it follows that, if surgery on a knot k with less than 10 crossings produces a manifold with cyclic fundamental group, then k is a torus knot.