Displaying 121 – 140 of 193

Showing per page

Algebraic characteristic classes for idempotent matrices.

Francisco Gómez (1992)

Publicacions Matemàtiques

This paper contains the algebraic analog for idempotent matrices of the Chern-Weil theory of characteristic classes. This is used to show, algebraically, that the canonical line bundle on the complex projective space is not stably trivial. Also a theorem is proved saying that for any smooth manifold there is a canonical epimorphism from the even dimensional algebraic de Rham cohomology of its algebra of smooth functions onto the standard even dimensional de Rham cohomology of the manifold.

Algebraic Connections and Curvature in Fibrations Bundles of Associative Algebras

Igor M. Burlakov (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

In this article fibrations of associative algebras on smooth manifolds are investigated. Sections of these fibrations are spinor, co spinor and vector fields with respect to a gauge group. Invariant differentiations are constructed and curvature and torsion of invariant differentiations are calculated.

Algebraic properties of decorated splitting obstruction groups

A. Cavicchioli, Y. V. Muranov, D. Repovš (2001)

Bollettino dell'Unione Matematica Italiana

In questo articolo si riassumono le definizioni e le principali proprietà dei gruppi di ostruzione con decorazione di tipo LS e LP. Si stabiliscono nuove relazioni fra questi gruppi e si descrivono le proprietà delle mappe naturali fra differenti gruppi con decorazione. Si costruiscono varie successioni spettrali, contenenti questi gruppi con decorazione, e si studiano la loro connessione con le successioni spettrali in K -teoria per certe estensioni quadratiche di antistrutture. Infine, si introduce...

Algebroid nature of the characteristic classes of flat bundles

Jan Kubarski (1998)

Banach Center Publications

The following two homotopic notions are important in many domains of differential geometry: - homotopic homomorphisms between principal bundles (and between other objects), - homotopic subbundles. They play a role, for example, in many fundamental problems of characteristic classes. It turns out that both these notions can be - in a natural way - expressed in the language of Lie algebroids. Moreover, the characteristic homomorphisms of principal bundles (the Chern-Weil homomorphism [K4], or the...

Currently displaying 121 – 140 of 193