Page 1

Displaying 1 – 20 of 20

Showing per page

Quantum classifying spaces and universal quantum characteristic classes

Mićo Đurđević (1997)

Banach Center Publications

A construction of the noncommutative-geometric counterparts of classical classifying spaces is presented, for general compact matrix quantum structure groups. A quantum analogue of the classical concept of the classifying map is introduced and analyzed. Interrelations with the abstract algebraic theory of quantum characteristic classes are discussed. Various non-equivalent approaches to defining universal characteristic classes are outlined.

Quantum invariants of periodic links and periodic 3-manifolds

Qi Chen, Thang Le (2004)

Fundamenta Mathematicae

We give criteria for framed links and 3-manifolds to be periodic of prime order. As applications we show that the Poincaré sphere is of periodicity 2, 3, 5 only and the Brieskorn sphere Σ(2,3,7) is of periodicity 2, 3, 7 only.

Quantum mechanics and nonabelian theta functions for the gauge group SU(2)

Răzvan Gelca, Alejandro Uribe (2015)

Fundamenta Mathematicae

We propose a direction of study of nonabelian theta functions by establishing an analogy between the Weyl quantization of a one-dimensional particle and the metaplectic representation on the one hand, and the quantization of the moduli space of flat connections on a surface and the representation of the mapping class group on the space of nonabelian theta functions on the other. We exemplify this with the cases of classical theta functions and of the nonabelian theta functions for the gauge group...

Quantum principal bundles and their characteristic classes

Mićo Đurđević (1997)

Banach Center Publications

A general theory of characteristic classes of quantum principal bundles is presented, incorporating basic ideas of classical Weil theory into the conceptual framework of noncommutative differential geometry. A purely cohomological interpretation of the Weil homomorphism is given, together with a geometrical interpretation via quantum invariant polynomials. A natural spectral sequence is described. Some interesting quantum phenomena appearing in the formalism are discussed.

Quantum Singularity Theory for A ( r - 1 ) and r -Spin Theory

Huijun Fan, Tyler Jarvis, Yongbin Ruan (2011)

Annales de l’institut Fourier

We give a review of our construction of a cohomological field theory for quasi-homogeneous singularities and the r -spin theory of Jarvis-Kimura-Vaintrob. We further prove that for a singularity W of type A our construction of the stack of W -curves is canonically isomorphic to the stack of r -spin curves described by Abramovich and Jarvis. We further prove that our theory satisfies all the Jarvis-Kimura-Vaintrob axioms for an r -spin virtual class. Therefore, the Faber-Shadrin-Zvonkine proof of the...

Quelques calculs en cobordisme lagrangien

Michèle Audin (1985)

Annales de l'institut Fourier

Nous considérons les groupes de cobordisme (définis par Arnold) d’immersions lagrangiennes exactes de variétés compactes dans R 2 n . Grâce au théorème de Gromov-Lees, leur calcul est celui des groupes d’homotopie de spectres de Thom construits sur les espaces U / O (cas non-orienté, le calcul est alors dû à Smith et Stong) et U / S O (cas orienté, groupes dont nous calculons la “partie paire”, et sur la “partie impaire” desquels nous donnons des informations). Nous calculons aussi les images de ces groupes dans...

Quelques conditions d'existence de feuilles compactes

Claude Lamoureux (1974)

Annales de l'institut Fourier

Après avoir démontré une caractérisation topologique des feuilles compactes, nous obtenons quelques conditions d’existence de feuilles compactes dans les variétés quelconques, ainsi que la structure de la famille des ensembles minimaux des variétés compactes ; nous construisons des exemples d’un type nouveau.

Quelques exemples de feuilletages espèces rares

Gilbert Hector (1976)

Annales de l'institut Fourier

On répartit habituellement les feuilles d’un feuilletage de codimension 1 sur une variété M en trois types :i) feuilles propres i.e. ouvertes dans leur adhérence ;ii) feuilles localement denses ;iii) feuilles exceptionnelles i.e. ni propres, ni localement denses.Lorsque le mélange des feuilles des divers types dans un même feuilletage est suffisamment complexe, on dit qu’on a affaire à un feuilletage “espèce rare". Le but du présent travail est alors de constituer une sorte d’“herbier des espèces...

Quelques remarques sur les bouts de feuilles

Claude Lamoureux (1977)

Annales de l'institut Fourier

Le but de ce travail est de démontrer quelques propriétés de l’ensemble-limite L ( ϵ ) , au sens de Reeb, des bouts ϵ des feuilles des feuilletages F de codimension 1, lorsque ϵ tend vers L ( ϵ ) d’un seul côté, puis lorsque F est un feuilletage de classe C 2 .

Currently displaying 1 – 20 of 20

Page 1