Page 1

Displaying 1 – 13 of 13

Showing per page

Karoubi’s relative Chern character and Beilinson’s regulator

Georg Tamme (2012)

Annales scientifiques de l'École Normale Supérieure

We construct a variant of Karoubi’s relative Chern character for smooth varieties over 𝐂 and prove a comparison result with Beilinson’s regulator with values in Deligne-Beilinson cohomology. As a corollary we obtain a new proof of Burgos’ Theorem that for number fields Borel’s regulator is twice Beilinson’s regulator.

K-theory, flat bundles and the Borel classes

Bjørn Jahren (1999)

Fundamenta Mathematicae

Using Hausmann and Vogel's homology sphere bundle interpretation of algebraic K-theory, we construct K-theory invariants by a theory of characteristic classes for flat bundles. It is shown that the Borel classes are detected this way, as well as the rational K-theory of integer group rings of finite groups.

K-theory over C*-algebras

Alexandr S. Mishchenko (2007)

Banach Center Publications

The contents of the article represents the minicourse which was delivered at the 7th conference "Geometry and Topology of Manifolds. The Mathematical Legacy of Charles Ehresmann", Będlewo (Poland), 8.05.2005 - 15.05.2005. The article includes the description of the so called Hirzebruch formula in different aspects which lead to a basic list of problems related to noncommutative geometry and topology. In conclusion, two new problems are presented: about almost flat bundles and about the Noether decomposition...

Currently displaying 1 – 13 of 13

Page 1