Some Exotic Spheres with Positive Ricci Curvature.
The KV-homology theory is a new framework which yields interesting properties of lagrangian foliations. This short note is devoted to relationships between the KV-homology and the KV-cohomology of a lagrangian foliation. Let us denote by (resp. ) the KV-algebra (resp. the space of basic functions) of a lagrangian foliation F. We show that there exists a pairing of cohomology and homology to . That is to say, there is a bilinear map , which is invariant under F-preserving symplectic diffeomorphisms....
The first part of this paper is concerned with geometrical and cohomological properties of Lie flows on compact manifolds. Relations between these properties and the Euler class of the flow are given.The second part deals with 3-codimensional Lie flows. Using the classification of 3-dimensional Lie algebras we give cohomological obstructions for a compact manifold admits a Lie flow transversely modeled on a given Lie algebra.
We discuss the gluing principle in Morse-Floer homology and show that there is a gap in the traditional proof of the converse gluing theorem. We show how this gap can be closed by the use of a uniform tubular neighborhood theorem. The latter result is only stated here. Details are given in the authors' paper, Tubular neighborhoods and the Gluing Principle in Floer homology theory, to appear.