Complex curves and surgery
According to Ando's theorem, the oriented bordism group of fold maps of n-manifolds into n-space is isomorphic to the stable n-stem. Among such fold maps we define two geometric operations corresponding to the composition and to the Toda bracket in the stable stem through Ando's isomorphism. By using these operations we explicitly construct several fold maps with convenient properties, including a fold map which represents the generator of the stable 6-stem.
To obtain a robust version of exponential and Holt-Winters smoothing the idea of -estimation can be used. The difficulty is the formulation of an easy-to-use recursive formula for its computation. A first attempt was made by Cipra (Robust exponential smoothing, J. Forecast. 11 (1992), 57–69). The recursive formulation presented there, however, is unstable. In this paper, a new recursive computing scheme is proposed. A simulation study illustrates that the new recursions result in smaller forecast...
It is proved that the normal bundle of a distribution on a riemannian manifold admits a conformal curvature if and only if is a conformal foliation. Then is conformally flat if and only if vanishes. Also, the Pontrjagin classes of can be expressed in terms of .
In two fundamental classical papers, Masur [14] and Veech [21] have independently proved that the Teichmüller geodesic flow acts ergodically on each connected component of each stratum of the moduli space of quadratic differentials. It is therefore interesting to have a classification of the ergodic components. Veech has proved that these strata are not necessarily connected. In a recent work [8], Kontsevich and Zorich have completely classified the components in the particular case where the quadratic...
The subject of this paper is the notion of the connection in a regular Poisson manifold M, defined as a splitting of the Atiyah sequence of its Lie algebroid. In the case when the characteristic foliation F is an ℝ-Lie foliation, the fibre integral operator along the adjoint bundle is used to define the Euler class of the Poisson manifold M. When M is oriented 3-dimensional, the notion of the index of a local flat connection with singularities along a closed transversal is defined. If, additionally,...