Displaying 141 – 160 of 208

Showing per page

Compositions of equi-dimensional fold maps

Yoshihiro Hirato, Masamichi Takase (2012)

Fundamenta Mathematicae

According to Ando's theorem, the oriented bordism group of fold maps of n-manifolds into n-space is isomorphic to the stable n-stem. Among such fold maps we define two geometric operations corresponding to the composition and to the Toda bracket in the stable stem through Ando's isomorphism. By using these operations we explicitly construct several fold maps with convenient properties, including a fold map which represents the generator of the stable 6-stem.

Computational aspects of robust Holt-Winters smoothing based on M -estimation

Christophe Croux, Sarah Gelper, Roland Fried (2008)

Applications of Mathematics

To obtain a robust version of exponential and Holt-Winters smoothing the idea of M -estimation can be used. The difficulty is the formulation of an easy-to-use recursive formula for its computation. A first attempt was made by Cipra (Robust exponential smoothing, J. Forecast. 11 (1992), 57–69). The recursive formulation presented there, however, is unstable. In this paper, a new recursive computing scheme is proposed. A simulation study illustrates that the new recursions result in smaller forecast...

Conformal curvature for the normal bundle of a conformal foliation

Angel Montesinos (1982)

Annales de l'institut Fourier

It is proved that the normal bundle of a distribution 𝒱 on a riemannian manifold admits a conformal curvature C if and only if 𝒱 is a conformal foliation. Then is conformally flat if and only if C vanishes. Also, the Pontrjagin classes of can be expressed in terms of C .

Conjugation spaces.

Hausmann, Jean-Claude, Holm, Tara, Puppe, Volker (2005)

Algebraic & Geometric Topology

Connected components of the strata of the moduli spaces of quadratic differentials

Erwan Lanneau (2008)

Annales scientifiques de l'École Normale Supérieure

In two fundamental classical papers, Masur [14] and Veech [21] have independently proved that the Teichmüller geodesic flow acts ergodically on each connected component of each stratum of the moduli space of quadratic differentials. It is therefore interesting to have a classification of the ergodic components. Veech has proved that these strata are not necessarily connected. In a recent work [8], Kontsevich and Zorich have completely classified the components in the particular case where the quadratic...

Connections in regular Poisson manifolds over ℝ-Lie foliations

Jan Kubarski (2000)

Banach Center Publications

The subject of this paper is the notion of the connection in a regular Poisson manifold M, defined as a splitting of the Atiyah sequence of its Lie algebroid. In the case when the characteristic foliation F is an ℝ-Lie foliation, the fibre integral operator along the adjoint bundle is used to define the Euler class of the Poisson manifold M. When M is oriented 3-dimensional, the notion of the index of a local flat connection with singularities along a closed transversal is defined. If, additionally,...

Currently displaying 141 – 160 of 208