The push-out space of immersed spheres.
Rational homotopy methods are used for studying the problem of the topological smoothing of complex algebraic isolated singularities. It is shown that one may always find a suitable covering which is smoothable. The problem of the topological smoothing (including the complex normal structure) for conical singularities is considered in the sequel. A connection is established between the existence of certain relations between the normal Chern degrees of a smooth projective variety and the question...
We study the sensibility of an invariant of 2-dimensional CW complexes in the case when it comes as a reduction (through a change of ring) of a modular invariant of 4-dimensional thickenings of such complexes: it is shown that if the Euler characteristic of the 2-complex is greater than or equal to 1, its invariant depends only on homology. To see what is happening when the Euler characteristic is smaller than 1, we use ideas of Kerler and construct, from any tortile category, an invariant of 4-thickenings...
Assume that is a connected negative definite plumbing graph, and that the associated plumbed 3-manifold is a rational homology sphere. We provide two new combinatorial formulae for the Seiberg–Witten invariant of . The first one is the constant term of a ‘multivariable Hilbert polynomial’, it reflects in a conceptual way the structure of the graph , and emphasizes the subtle parallelism between these topological invariants and the analytic invariants of normal surface singularities. The second...