Page 1

Displaying 1 – 16 of 16

Showing per page

Rank gradient, cost of groups and the rank versus Heegaard genus problem

Miklós Abért, Nikolay Nikolov (2012)

Journal of the European Mathematical Society

We study the growth of the rank of subgroups of finite index in residually finite groups, by relating it to the notion of cost. As a by-product, we show that the ‘rank vs. Heegaard genus’ conjecture on hyperbolic 3-manifolds is incompatible with the ‘fixed price problem’ in topological dynamics.

Real algebraic actions on projective spaces - A survey

Ted Petrie (1973)

Annales de l'institut Fourier

Let G be a compact lie group. We introduce the set S G ( Y ) for every smooth G manifold Y . It consists of equivalence classes of pair ( X , f ) where f : X Y is a G map which defines a homotopy equivalence from X to Y . Two pairs ( X i , f i ) , for i = 0 , 1 , are equivalent if there is a G homotopy equivalence φ : X 0 X 1 such that f 0 is G homotopic to f 1 φ .Properties of the set S G ( Y ) and related to the representation of G on the tangent spaces of X and Y at the fixed points. For the case G = S 1 and Y is the S 1 manifold defined by a “linear” S 1 action on complex...

Representation of finite groups and the first Betti number of branched coverings of a universal Borromean orbifold

Masahito Toda (2004)

Open Mathematics

The paper studies the first homology of finite regular branched coverings of a universal Borromean orbifold called B 4,4,4ℍ3. We investigate the irreducible components of the first homology as a representation space of the finite covering transformation group G. This gives information on the first betti number of finite coverings of general 3-manifolds by the universality of B 4,4,4. The main result of the paper is a criterion in terms of the irreducible character whether a given irreducible representation...

Currently displaying 1 – 16 of 16

Page 1