The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper we show that the multiplicities of holomorphic discrete series representations relative to reductive subgroups satisfy the credo “quantization commutes with reduction”.
We establish that a quasiconformal group is of compact type if and only if its limits set is purely conical and find that the limit set of a quasiconformal group of compact type is uniformly perfect. A key tool is the result of Bowditch-Tukia on compact-type convergence groups. These results provide crucial tools for studying the deformations of quasiconformal groups and in establishing isomorphisms between such groups and conformal groups.
We define notion of a quaternionic and para-quaternionic CR structure on a (4n+3)-dimensional manifold M as a triple (ω1,ω2,ω3) of 1-forms such that the corresponding 2-forms satisfy some algebraic relations. We associate with such a structure an Einstein metric on M and establish relations between quaternionic CR structures, contact pseudo-metric 3-structures and pseudo-Sasakian 3-structures. Homogeneous examples of (para)-quaternionic CR manifolds are given and a reduction construction of non...
Soit l’ensemble des points d’un groupe algébrique semi-simple connexe de rang relatif un sur un corps local ultramétrique. Nous décrivons tous les sous-groupes discrets de type fini sans torsion de qui agissent proprement et cocompactement sur par multiplication à gauche et à droite. Nous montrons qu’après une petite déformation dans un tel sous-groupe agit encore librement, proprement discontinûment et cocompactement sur .
Currently displaying 1 –
7 of
7