Eine Bemerkung zur topologischen Entropie.
The search session has expired. Please query the service again.
Page 1 Next
Manfred Denker, Michael S. Keane (1978)
Monatshefte für Mathematik
Thomas Fiedler (1984)
Manuscripta mathematica
Peter Slodowy (1978)
Mathematische Zeitschrift
Antonio F. Costa (1985)
Collectanea Mathematica
Herbert Abels (1972)
Commentarii mathematici Helvetici
Heiner Zieschang, Bruno Zimmermann (1979)
Mathematische Annalen
Frank Quin (1982)
Inventiones mathematicae
E. Luft (1985)
Mathematische Annalen
Philippe Jouan (2010)
ESAIM: Control, Optimisation and Calculus of Variations
The aim of this paper is to prove that a control affine system on a manifold is equivalent by diffeomorphism to a linear system on a Lie group or a homogeneous space if and only if the vector fields of the system are complete and generate a finite dimensional Lie algebra. A vector field on a connected Lie group is linear if its flow is a one parameter group of automorphisms. An affine vector field is obtained by adding a left invariant one. Its projection on a homogeneous space, whenever it exists,...
Hannu Honkasalo (1990)
Mathematica Scandinavica
Sören Illman (1973)
Annales de l'institut Fourier
Let be a topological group. We give the existence of an equivariant homology and cohomology theory, defined on the category of all -pairs and -maps, which both satisfy all seven equivariant Eilenberg-Steenrod axioms and have a given covariant and contravariant, respectively, coefficient system as coefficients.In the case that is a compact Lie group we also define equivariant -complexes and mention some of their basic properties.The paper is a short abstract and contains no proofs.
Stratos Prassidis (1995)
Forum mathematicum
Zhi Lü, Mikiya Masuda (2009)
Colloquium Mathematicae
We consider locally standard 2-torus manifolds, which are a generalization of small covers of Davis and Januszkiewicz and study their equivariant classification. We formulate a necessary and sufficient condition for two locally standard 2-torus manifolds over the same orbit space to be equivariantly homeomorphic. This leads us to count the equivariant homeomorphism classes of locally standard 2-torus manifolds with the same orbit space.
Marek Golasiński (1997)
Mathematica Slovaca
Theodore Chang (1978)
Mathematische Annalen
Wolfgang Lück (1987)
Manuscripta mathematica
Richard Allen (1980)
Fundamenta Mathematicae
Lück, Wolfgang, Rosenberg, Jonathan (2003)
Geometry & Topology
Peter Löffler (1977/1978)
Manuscripta mathematica
Marek Golasiński, Daciberg Lima Gonçalves (2001)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Page 1 Next