Higher order graded and berezinian lagrangian densities and their Euler-Lagrange equations
We introduce an exchange natural isomorphism between iterated higher order jet functors depending on a classical linear connection on the base manifold. As an application we study the prolongation of higher order connections to jet bundles.
We describe how find all -natural operators transforming torsion free classical linear connections on -manifolds into -th order linear connections on .
We generalize reduction theorems for classical connections to operators with values in k-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.
We study cohomologies and Hodge theory for complex manifolds with twisted differentials. In particular, we get another cohomological obstruction for manifolds in class C of Fujiki. We give a Hodgetheoretical proof of the characterization of solvmanifolds in class C of Fujiki, first stated by D. Arapura.
The Bott-Chern cohomology groups and the Bott-Chern Laplacian on differential forms of mixed type on a compact foliated Kähler manifold are defined and studied. Also, a Hodge decomposition theorem of Bott-Chern type for differential forms of mixed type is proved. Finally, the case of projectivized tangent bundle of a complex Finsler manifold is discussed.
The key result (Theorem 1) provides the existence of a holomorphic approximation map for some space of C∞-functions on an open subset of Rn. This leads to results about the existence of a continuous linear extension map from the space of the Whitney jets on a closed subset F of Rn into a space of holomorphic functions on an open subset D of Cn such that D ∩ Rn = RnF.
A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension . In this minicourse we discuss these problems from a geometric point of view.
Un sous-ensemble pfaffien d’un ouvert semi-analytique est une intersection finie d’ensembles semi-analytiques relativement compacts de et de feuilles non spiralantes de certains feuilletages analytiques de codimension 1 de Les sous-ensembles semi-pfaffiens de sont les éléments de la plus petite classe de sous-ensembles de contenant les sous-ensembles pfaffiens de , stable par intersection finie, réunion finie et différence symétrique. Les ensembles -pfaffiens sont les éléments de la...