Complex velocities on real manifolds
Nous introduisons de nouvelles régularités de Kuo-Verdier et montrons que pour une stratification
It is proved that the normal bundle of a distribution on a riemannian manifold admits a conformal curvature if and only if is a conformal foliation. Then is conformally flat if and only if vanishes. Also, the Pontrjagin classes of can be expressed in terms of .
For odd-dimensional Poincaré–Einstein manifolds , we study the set of harmonic -forms (for ) which are (with ) on the conformal compactification of . This set is infinite-dimensional for small but it becomes finite-dimensional if is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology and the kernel of the Branson–Gover [3] differential operators on the conformal infinity . We also relate the set of forms in the kernel of to the conformal...
In this paper we consider a product preserving functor of order and a connection of order on a manifold . We introduce horizontal lifts of tensor fields and linear connections from to with respect to . Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order.
We classify all -natural operators transforming second order connections Γ: Y → J²Y on a fibred manifold Y → M into second order connections on the vertical Weil bundle corresponding to a Weil algebra A.
For every product preserving bundle functor on fibered manifolds, we describe the underlying functor of any order . We define the bundle of -dimensional contact elements of the order on a fibered manifold and we characterize its elements geometrically. Then we study the bundle of general contact elements of type . We also determine all natural transformations of into itself and of into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms...
We study the geometry of multidimensional scalar order PDEs (i.e. PDEs with independent variables), viewed as hypersurfaces in the Lagrangian Grassmann bundle over a -dimensional contact manifold . We develop the theory of characteristics of in terms of contact geometry and of the geometry of Lagrangian Grassmannian and study their relationship with intermediate integrals of . After specializing such results to general Monge-Ampère equations (MAEs), we focus our attention to MAEs of...