Displaying 41 – 60 of 79

Showing per page

Cône normal et régularités de Kuo-Verdier

Patrice Orro, David Trotman (2002)

Bulletin de la Société Mathématique de France

Nous introduisons de nouvelles régularités de Kuo-Verdier ( r e ) et montrons que pour une stratification C 2 ( a + r e ) ...

Conformal curvature for the normal bundle of a conformal foliation

Angel Montesinos (1982)

Annales de l'institut Fourier

It is proved that the normal bundle of a distribution 𝒱 on a riemannian manifold admits a conformal curvature C if and only if 𝒱 is a conformal foliation. Then is conformally flat if and only if C vanishes. Also, the Pontrjagin classes of can be expressed in terms of C .

Conformal harmonic forms, Branson–Gover operators and Dirichlet problem at infinity

Erwann Aubry, Colin Guillarmou (2011)

Journal of the European Mathematical Society

For odd-dimensional Poincaré–Einstein manifolds ( X n + 1 , g ) , we study the set of harmonic k -forms (for k < n / 2 ) which are C m (with m ) on the conformal compactification X ¯ of X . This set is infinite-dimensional for small m but it becomes finite-dimensional if m is large enough, and in one-to-one correspondence with the direct sum of the relative cohomology H k ( X ¯ , X ¯ ) and the kernel of the Branson–Gover [3] differential operators ( L k , G k ) on the conformal infinity ( X ¯ , [ h 0 ] ) . We also relate the set of C n - 2 k + 1 ( Λ k ( X ¯ ) ) forms in the kernel of d + δ g to the conformal...

Connections of higher order and product preserving functors

Jacek Gancarzewicz, Noureddine Rahmani, Modesto R. Salgado (2002)

Czechoslovak Mathematical Journal

In this paper we consider a product preserving functor of order r and a connection Γ of order r on a manifold M . We introduce horizontal lifts of tensor fields and linear connections from M to ( M ) with respect to Γ . Our definitions and results generalize the particular cases of the tangent bundle and the tangent bundle of higher order.

Constructions on second order connections

J. Kurek, W. M. Mikulski (2007)

Annales Polonici Mathematici

We classify all m , n -natural operators : J ² J ² V A transforming second order connections Γ: Y → J²Y on a fibred manifold Y → M into second order connections ( Γ ) : V A Y J ² V A Y on the vertical Weil bundle V A Y M corresponding to a Weil algebra A.

Contact elements on fibered manifolds

Ivan Kolář, Włodzimierz M. Mikulski (2003)

Czechoslovak Mathematical Journal

For every product preserving bundle functor T μ on fibered manifolds, we describe the underlying functor of any order ( r , s , q ) , s r q . We define the bundle K k , l r , s , q Y of ( k , l ) -dimensional contact elements of the order ( r , s , q ) on a fibered manifold Y and we characterize its elements geometrically. Then we study the bundle of general contact elements of type μ . We also determine all natural transformations of K k , l r , s , q Y into itself and of T ( K k , l r , s , q Y ) into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms...

Contact geometry of multidimensional Monge-Ampère equations: characteristics, intermediate integrals and solutions

Dmitri V. Alekseevsky, Ricardo Alonso-Blanco, Gianni Manno, Fabrizio Pugliese (2012)

Annales de l’institut Fourier

We study the geometry of multidimensional scalar 2 n d order PDEs (i.e. PDEs with n independent variables), viewed as hypersurfaces in the Lagrangian Grassmann bundle M ( 1 ) over a ( 2 n + 1 ) -dimensional contact manifold ( M , 𝒞 ) . We develop the theory of characteristics of in terms of contact geometry and of the geometry of Lagrangian Grassmannian and study their relationship with intermediate integrals of . After specializing such results to general Monge-Ampère equations (MAEs), we focus our attention to MAEs of...

Currently displaying 41 – 60 of 79