On Hadamard differentiability
In the first part of this paper, we prove that in a sense the class of bi-Lipschitz -convex mappings, whose inverses are locally -convex, is stable under finite-dimensional -convex perturbations. In the second part, we construct two -convex mappings from onto , which are both bi-Lipschitz and their inverses are nowhere locally -convex. The second mapping, whose construction is more complicated, has an invertible strict derivative at . These mappings show that for (locally) -convex mappings...
Properties of Lipschitz and d.c. surfaces of finite codimension in a Banach space and properties of generated -ideals are studied. These -ideals naturally appear in the differentiation theory and in the abstract approximation theory. Using these properties, we improve an unpublished result of M. Heisler which gives an alternative proof of a result of D. Preiss on singular points of convex functions.
We find conditions for a smooth nonlinear map f: U → V between open subsets of Hilbert or Banach spaces to be locally convex in the sense that for some c and each positive ɛ < c the image f(B ɛ(x)) of each ɛ-ball B ɛ(x) ⊂ U is convex. We give a lower bound on c via the second order Lipschitz constant Lip2(f), the Lipschitz-open constant Lipo(f) of f, and the 2-convexity number conv2(X) of the Banach space X.
The notion of an implicit Hamiltonian system-an isotropic mapping H: M → (TM,ω̇) into the tangent bundle endowed with the symplectic structure defined by canonical morphism between tangent and cotangent bundles of M-is studied. The corank one singularities of such systems are classified. Their transversality conditions in the 1-jet space of isotropic mappings are described and the corresponding symplectically invariant algebras of Hamiltonian generating functions are calculated.