Displaying 301 – 320 of 423

Showing per page

Some critical almost Kähler structures

Takashi Oguro, Kouei Sekigawa (2008)

Colloquium Mathematicae

We consider the set of all almost Kähler structures (g,J) on a 2n-dimensional compact orientable manifold M and study a critical point of the functional λ , μ ( J , g ) = M ( λ τ + μ τ * ) d M g with respect to the scalar curvature τ and the *-scalar curvature τ*. We show that an almost Kähler structure (J,g) is a critical point of - 1 , 1 if and only if (J,g) is a Kähler structure on M.

Spaces of measurable functions

Piotr Niemiec (2013)

Open Mathematics

For a metrizable space X and a finite measure space (Ω, 𝔐 , µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of 𝔐 -measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.

Spaces of polynomials with roots of bounded multiplicity

M. Guest, A. Kozlowski, K. Yamaguchi (1999)

Fundamenta Mathematicae

We describe an alternative approach to some results of Vassiliev ([Va1]) on spaces of polynomials, by applying the "scanning method" used by Segal ([Se2]) in his investigation of spaces of rational functions. We explain how these two approaches are related by the Smale-Hirsch Principle or the h-Principle of Gromov. We obtain several generalizations, which may be of interest in their own right.

Spaces of upper semicontinuous multi-valued functions on complete metric spaces

Katsuro Sakai, Shigenori Uehara (1999)

Fundamenta Mathematicae

Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x’,t’)) = maxd(x,x’), |t - t’|. We denote by U S C C B ( X ) the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify φ U S C C B ( X ) with its graph which is a closed subset of X × ℝ. The space U S C C B ( X ) admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then U S C C B ( X ) is homeomorphic to a...

Strong density for higher order Sobolev spaces into compact manifolds

Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen (2015)

Journal of the European Mathematical Society

Given a compact manifold N n , an integer k * and an exponent 1 p < , we prove that the class C ( Q ¯ m ; N n ) of smooth maps on the cube with values into N n is dense with respect to the strong topology in the Sobolev space W k , p ( Q m ; N n ) when the homotopy group π k p ( N n ) of order k p is trivial. We also prove density of maps that are smooth except for a set of dimension m - k p - 1 , without any restriction on the homotopy group of N n .

Currently displaying 301 – 320 of 423