Saddle Points and Multiple Solutions of Differential Equations.
This article follows the previous works [HeKlNi, HeNi] by Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of are considered as the small parameter tends to . The function is assumed to be a Morse function on some bounded domain with boundary . Neumann type boundary conditions are considered. With these boundary conditions, some possible simplifications...
We discuss the existence of closed geodesic on a Riemannian manifold and the existence of periodic solution of second order Hamiltonian systems.
We present critical groups estimates for a functional defined on the Banach space , bounded domain in , , associated to a quasilinear elliptic equation involving -laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of in each critical point, we compute the critical groups of in each isolated critical point via Morse index.
This paper uses minimization methods and renormalized functionals to find spatially heteroclinic solutions for some classes of semilinear elliptic partial differential equations
This paper uses minimization methods and renormalized functionals to find spatially heteroclinic solutions for some classes of semilinear elliptic partial differential equations
∗Partially supported by Grant MM 409/94 of the Mininstry of Education, Science and Technology, Bulgaria. ∗∗Partially supported by Grants MM 521/95, MM 442/94 of the Mininstry of Education, Science and Technology, Bulgaria.The definition of the weak slope of continuous functions introduced by Degiovanni and Marzocchi (cf. [8]) and its interrelation with the notion “steepness” of locally Lipschitz functions are discussed. A deformation lemma and a mountain pass theorem for usco mappings are proved....