Sine - Laplace Equation, Sinh-Laplace Equation and Harmonic Maps.
Page 1 Next
Hu Hesheng (1982)
Manuscripta mathematica
Zhang, Kewei (2000)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Abdelmadjid Bennouar, Seddik Ouakkas (2017)
Commentationes Mathematicae Universitatis Carolinae
In this paper, we characterize a class of biharmonic maps from and between product manifolds in terms of the warping function. Examples are constructed when one of the factors is either Euclidean space or sphere.
Mohamed Tahar Kadaoui Abbassi, Giovanni Calvaruso, Domenico Perrone (2009)
Annales mathématiques Blaise Pascal
We produce new examples of harmonic maps, having as source manifold a space of constant curvature and as target manifold its tangent bundle , equipped with a suitable Riemannian -natural metric. In particular, we determine a family of Riemannian -natural metrics on , with respect to which all conformal gradient vector fields define harmonic maps from into .
J. H. Sampson (1978)
Annales scientifiques de l'École Normale Supérieure
James Eells, Luc Lemaire (1992)
Banach Center Publications
Paredes, Marlio (2000)
Revista Colombiana de Matemáticas
Yun, Gabjin (2001)
International Journal of Mathematics and Mathematical Sciences
Gao-Yang Jia, Zhen Rong Zhou (2013)
Archivum Mathematicum
In this paper, we define an -Yang-Mills functional, and hence -Yang-Mills fields. The first and the second variational formulas are calculated, and the stabilities of -Yang-Mills fields on some submanifolds of the Euclidean spaces and the spheres are investigated, and hence the theories of Yang-Mills fields are generalized in this paper.
Alfred Baldes (1984)
Mathematische Zeitschrift
Yoshihiro Ohnita, Seiichi Udagawa (1990)
Mathematische Zeitschrift
Kunio Sakamoto (1991)
Journal für die reine und angewandte Mathematik
R. Hardt, D. Kinderlehrer, Fang-Hua Lin (1988)
Annales de l'I.H.P. Analyse non linéaire
Jintang Li (2010)
Annales Polonici Mathematici
We study the stability of harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature, and we prove that if Mⁿ is a compact Einstein Riemannian minimal submanifold of a Riemannian unit sphere with Ricci curvature satisfying , then there is no non-degenerate stable harmonic map between M and any compact Finsler manifold.
Y.L. Pan (1990)
Mathematische Zeitschrift
Jean Picard (2005)
Annales de l'I.H.P. Probabilités et statistiques
K. David Elworthy (1980/1981)
Séminaire Bourbaki
Brian White (1997)
Journal für die reine und angewandte Mathematik
Ngaiming Mok (1988)
Mathematische Annalen
Jun-ichi Inoguchi, Ji-Eun Lee (2012)
Archivum Mathematicum
We classify Hopf cylinders with proper mean curvature vector field in Sasakian 3-manifolds with respect to the Tanaka-Webster connection.
Page 1 Next