Displaying 81 – 100 of 132

Showing per page

On the existence of multiple solutions for a nonlocal BVP with vector-valued response

Andrzej Nowakowski, Aleksandra Orpel (2006)

Czechoslovak Mathematical Journal

The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.

On the inverse problem of the calculus of variations for ordinary differential equations

Olga Krupková (1993)

Mathematica Bohemica

Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.

On the inverse variational problem in nonholonomic mechanics

Olga Rossi, Jana Musilová (2012)

Communications in Mathematics

The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of first order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with...

On the projective Finsler metrizability and the integrability of Rapcsák equation

Tamás Milkovszki, Zoltán Muzsnay (2017)

Czechoslovak Mathematical Journal

A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences...

On variational impulsive boundary value problems

Marek Galewski (2012)

Open Mathematics

Using the variational approach, we investigate the existence of solutions and their dependence on functional parameters for classical solutions to the second order impulsive boundary value Dirichlet problems with L1 right hand side.

Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles

Ján Brajerčík (2011)

Czechoslovak Mathematical Journal

Let μ : F X X be a principal bundle of frames with the structure group Gl n ( ) . It is shown that the variational problem, defined by Gl n ( ) -invariant Lagrangian on J r F X , can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.

Periodic solutions for second order Hamiltonian systems

Qiongfen Zhang, X. H. Tang (2012)

Applications of Mathematics

By using the least action principle and minimax methods in critical point theory, some existence theorems for periodic solutions of second order Hamiltonian systems are obtained.

Quasi-static rate-independent evolutions: characterization, existence, approximation and application to fracture mechanics

Matteo Negri (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We characterize quasi-static rate-independent evolutions, by means of their graph parametrization, in terms of a couple of equations: the first gives stationarity while the second provides the energy balance. An abstract existence result is given for functionals ℱ of class C1 in reflexive separable Banach spaces. We provide a couple of constructive proofs of existence which share common features with the theory of minimizing movements for gradient flows. Moreover, considering a sequence of functionals...

Refined Kato inequalities in riemannian geometry

Marc Herzlich (2000)

Journées équations aux dérivées partielles

We describe the recent joint work of the author with David M. J. Calderbank and Paul Gauduchon on refined Kato inequalities for sections of vector bundles living in the kernel of natural first-order elliptic operators.

Second variational derivative of local variational problems and conservation laws

Marcella Palese, Ekkehart Winterroth, E. Garrone (2011)

Archivum Mathematicum

We consider cohomology defined by a system of local Lagrangian and investigate under which conditions the variational Lie derivative of associated local currents is a system of conserved currents. The answer to such a question involves Jacobi equations for the local system. Furthermore, we recall that it was shown by Krupka et al. that the invariance of a closed Helmholtz form of a dynamical form is equivalent with local variationality of the Lie derivative of the dynamical form; we remark that...

Solution of the inverse problem of the calculus of variations

Jan Chrastina (1994)

Mathematica Bohemica

Given a family of curves constituting the general solution of a system of ordinary differential equations, the natural question occurs whether the family is identical with the totality of all extremals of an appropriate variational problem. Assuming the regularity of the latter problem, effective approaches are available but they fail in the non-regular case. However, a rather unusual variant of the calculus of variations based on infinitely prolonged differential equations and systematic use of...

Currently displaying 81 – 100 of 132