Page 1

Displaying 1 – 13 of 13

Showing per page

On a generalization of Helmholtz conditions

Radka Malíková (2009)

Acta Mathematica Universitatis Ostraviensis

Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ( n = 1 ), and obtain a generalization of Helmholtz conditions to this case.

On a variational theory of light rays on Lorentzian manifolds

Fabio Giannoni, Antonio Masiello (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note, by using a generalization of the classical Fermat principle, we prove the existence and multiplicity of lightlike geodesics joining a point with a timelike curve on a class of Lorentzian manifolds, satisfying a suitable compactness assumption, which is weaker than the globally hyperbolicity.

On multivortex solutions in Chern-Simons gauge theory

Michael Struwe, Gabriella Tarantello (1998)

Bollettino dell'Unione Matematica Italiana

Motivati dall'analisi asintotica dei vortici nella teoria di Chern-Simons-Higgs, si studia l'equazione - Δ u = λ e u Ω e u d x - 1 Ω , u H 1 Ω dove Ω = R 2 / Z 2 é il toro piatto bidimensionale. In contrasto con l'analogo problema di Dirichlet, si dimostra che per λ 8 π , 4 π 2 l'equazione ammette una soluzione non banale. Tale soluzione cattura il carattere bidimensionale dell'equazione, nel senso che, per tali valori di λ , l'equazione non può ammettere soluzioni (periodiche) non banali dipendenti da una sola variabile (vedi [10]).

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t , i ( T C ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains” i.e. ϕ i + N = ϕ i i and some N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On periodic motions of a two dimensional Toda type chain

Gianni Mancini, P. N. Srikanth (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we consider a chain of strings with fixed end points coupled with nearest neighbour interaction potential of exponential type, i.e. ϕ t t i - ϕ x x i = exp ( ϕ i + 1 - ϕ i ) - exp ( ϕ i - ϕ i - 1 ) 0 < x < π , t I R , i Z Z ( TC ) ϕ i ( 0 , t ) = ϕ i ( π , t ) = 0 t , i . We consider the case of “closed chains" i.e. ϕ i + N = ϕ i i Z Z and some N I N and look for solutions which are peirodic in time. The existence of periodic solutions for the dual problem is proved in Orlicz space setting.

On the existence of multiple solutions for a nonlocal BVP with vector-valued response

Andrzej Nowakowski, Aleksandra Orpel (2006)

Czechoslovak Mathematical Journal

The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.

On the inverse problem of the calculus of variations for ordinary differential equations

Olga Krupková (1993)

Mathematica Bohemica

Lepagean 2-form as a globally defined, closed counterpart of higher-order variational equations on fibered manifolds over one-dimensional bases is introduced, and elementary proofs of the basic theorems concerning the inverse problem of the calculus of variations, based on the notion of Lepagean 2-form and its properties, are given.

On the inverse variational problem in nonholonomic mechanics

Olga Rossi, Jana Musilová (2012)

Communications in Mathematics

The inverse problem of the calculus of variations in a nonholonomic setting is studied. The concept of constraint variationality is introduced on the basis of a recently discovered nonholonomic variational principle. Variational properties of first order mechanical systems with general nonholonomic constraints are studied. It is shown that constraint variationality is equivalent with the existence of a closed representative in the class of 2-forms determining the nonholonomic system. Together with...

On the projective Finsler metrizability and the integrability of Rapcsák equation

Tamás Milkovszki, Zoltán Muzsnay (2017)

Czechoslovak Mathematical Journal

A. Rapcsák obtained necessary and sufficient conditions for the projective Finsler metrizability in terms of a second order partial differential system. In this paper we investigate the integrability of the Rapcsák system and the extended Rapcsák system, by using the Spencer version of the Cartan-Kähler theorem. We also consider the extended Rapcsák system completed with the curvature condition. We prove that in the non-isotropic case there is a nontrivial Spencer cohomology group in the sequences...

On variational impulsive boundary value problems

Marek Galewski (2012)

Open Mathematics

Using the variational approach, we investigate the existence of solutions and their dependence on functional parameters for classical solutions to the second order impulsive boundary value Dirichlet problems with L1 right hand side.

Order reduction of the Euler-Lagrange equations of higher order invariant variational problems on frame bundles

Ján Brajerčík (2011)

Czechoslovak Mathematical Journal

Let μ : F X X be a principal bundle of frames with the structure group Gl n ( ) . It is shown that the variational problem, defined by Gl n ( ) -invariant Lagrangian on J r F X , can be equivalently studied on the associated space of connections with some compatibility condition, which gives us order reduction of the corresponding Euler-Lagrange equations.

Currently displaying 1 – 13 of 13

Page 1