2- I Inégalités faibles de Morse
Page 1 Next
E. Combet (1984)
Publications du Département de mathématiques (Lyon)
E. Combet (1984)
Publications du Département de mathématiques (Lyon)
E. Combet (1984)
Publications du Département de mathématiques (Lyon)
Le, Vy Khoi (2001)
Abstract and Applied Analysis
Giovanni Mancini, Roberta Musina (1987)
Manuscripta mathematica
Milan Kučera (1982)
Czechoslovak Mathematical Journal
Milan Kučera (1979)
Časopis pro pěstování matematiky
Milan Kučera (1979)
Časopis pro pěstování matematiky
Simon Brendle (2011)
Journal of the European Mathematical Society
We describe a new link between Perelman’s monotonicity formula for the reduced volume and ideas from optimal transport theory.
Kyoung-Sook Moon, Ricardo H. Nochetto, Tobias von Petersdorff, Chen-song Zhang (2007)
ESAIM: Mathematical Modelling and Numerical Analysis
Motivated by the pricing of American options for baskets we consider a parabolic variational inequality in a bounded polyhedral domain with a continuous piecewise smooth obstacle. We formulate a fully discrete method by using piecewise linear finite elements in space and the backward Euler method in time. We define an a posteriori error estimator and show that it gives an upper bound for the error in L2(0,T;H1(Ω)). The error estimator is localized in the sense that the size of the elliptic residual...
Jiří Neustupa (1995)
Mathematica Bohemica
It is shown that the uniform exponential stability and the uniform stability at permanently acting disturbances of a sufficiently smooth but not necessarily steady-state solution of a general variational inequality is a consequence of the uniform exponential stability of a zero solution of another (so called linearized) variational inequality.
Pavel Krejčí (2001)
Applications of Mathematics
It is known that the vector stop operator with a convex closed characteristic of class is locally Lipschitz continuous in the space of absolutely continuous functions if the unit outward normal mapping is Lipschitz continuous on the boundary of . We prove that in the regular case, this condition is also necessary.
Kučera, Petr (1998)
Proceedings of Equadiff 9
Jan Neumann (1987)
Commentationes Mathematicae Universitatis Carolinae
Christoph Scheven (2009)
Annales de l'I.H.P. Analyse non linéaire
Milan Kučera (1982)
Czechoslovak Mathematical Journal
Marco Degiovanni (1989)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Jin, Liangbing, Liu, Yongming (2010)
Documenta Mathematica
Marc Bourdon (2007)
Bulletin de la Société Mathématique de France
Étant donnés et un arbre dont chaque sommet est de valence au moins , on étudie la constante de Sobolev d’exposant de , c’est-à-dire la plus petite constante telle que pour tout on ait . Notre motivation vient de la recherche de graphes finis avec des petites constantes de Poincaré d’exposant , en vue d’obtenir des exemples de groupes qui ont la propriété de point fixe sur les espaces .
Jiří Jarušek (1984)
Czechoslovak Mathematical Journal
Page 1 Next