The second variation of area of minimal surfaces in four-manifolds.
Mario J. Micallef, Jon G. Wolfson (1993)
Mathematische Annalen
Robert Hardt, Fang-Hua Lin (1990)
Manuscripta mathematica
Johannes Huebschmann (1996)
Mathematische Zeitschrift
Johannes Huebschmann (1995)
Mathematische Zeitschrift
Jürgen Fuchs (1997)
Banach Center Publications
The geometric description of Yang–Mills theories and their configuration space is reviewed. The presence of singularities in M is explained and some of their properties are described. The singularity structure is analysed in detail for structure group SU(2). This review is based on [28].
Peter J. Braam, Gordana Matic (1993)
Forum mathematicum
Rudolf Švarc (1984)
Commentationes Mathematicae Universitatis Carolinae
J. Jost, S.-T. Yau (1986)
Mathematische Annalen
Moshe Marcus, Alexander J. Zaslavski (2002)
Annales de l'I.H.P. Analyse non linéaire
Guangcai Fang (1994)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Michael A. Buchner (1978)
Compositio Mathematica
Étienne Sandier (1993)
Annales de l'I.H.P. Analyse non linéaire
Krupka, D. (2006)
Lobachevskii Journal of Mathematics
Balan, Vladimir, Vîlcea, Ştefania-Alina (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Miyuki Koiso (1989)
Manuscripta mathematica
Schechter, Martin (2007)
Abstract and Applied Analysis
Yunmei Chen (1989)
Mathematische Zeitschrift
H. Hofer, A. Floer, C. Viterbo (1990)
Mathematische Zeitschrift
Gérard Besson (1982/1983)
Séminaire de théorie spectrale et géométrie
Ewa Tyszkowska (2012)
Colloquium Mathematicae
For a G-covering Y → Y/G = X induced by a properly discontinuous action of a group G on a topological space Y, there is a natural action of π(X,x) on the set F of points in Y with nontrivial stabilizers in G. We study the covering of X obtained from the universal covering of X and the left action of π(X,x) on F. We find a formula for the number of fixed points of an element g ∈ G which is a generalization of Macbeath's formula applied to an automorphism of a Riemann surface. We give a new method...