Existence Proofs for Harmonic Mappings with the Help of a Maximum Principle.
In this paper, we consider the following boundary value problem where and is a continuous function, , are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.
This paper is devoted to the existence of conformal metrics on with prescribed scalar curvature. We extend well known existence criteria due to Bahri-Coron.
On s’intéresse au problème de savoir quelle est la rigidité apportée au spectre d’une variété riemannienne compacte par le fait de fixer son volume et se classe conforme, et en particulier de déterminer si on peut faire tendre les valeurs propres vers 0 ou l’infini sous cette contrainte. On considère successivement les cas du laplacien usuel agissant sur les fonctions, l’opérateur de Dirac, le laplacien conforme et le laplacien de Hodge-de Rham.