Symmetric solutions to minimization of a -energy functional with ellipsoid value.
In this paper we derive general equations for constraint Noethertype symmetries of a first order non-holonomic mechanical system and the corresponding currents, i.e. functions constant along trajectories of the nonholonomic system. The approach is based on a consistent and effective geometrical theory of nonholonomic constrained systems on fibred manifolds and their jet prolongations, first presented and developed by Olga Rossi. As a representative example of application of the geometrical theory...
We refer to Krupka’s variational sequence, i.e. the quotient of the de Rham sequence on a finite order jet space with respect to a ‘variationally trivial’ subsequence. Among the morphisms of the variational sequence there are the Euler-Lagrange operator and the Helmholtz operator. In this note we show that the Lie derivative operator passes to the quotient in the variational sequence. Then we define the variational Lie derivative as an operator on the sheaves of the variational sequence. Explicit...
We classify nonconstant entire local minimizers of the standard Ginzburg–Landau functional for maps in satisfying a natural energy bound. Up to translations and rotations,such solutions of the Ginzburg–Landau system are given by an explicit solution equivariant under the action of the orthogonal group.