Displaying 61 – 80 of 85

Showing per page

Subriemannian geodesics of Carnot groups of step 3

Kanghai Tan, Xiaoping Yang (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In Carnot groups of step  ≤ 3, all subriemannian geodesics are proved to be normal. The proof is based on a reduction argument and the Goh condition for minimality of singular curves. The Goh condition is deduced from a reformulation and a calculus of the end-point mapping which boils down to the graded structures of Carnot groups.

Sur le problème inverse du calcul des variations : existence de lagrangiens associés à un spray dans le cas isotrope

Joseph Grifone, Zoltán Muzsnay (1999)

Annales de l'institut Fourier

En utilisant la version de Spencer-Goldschmidt du théorème de Cartan-Kähler nous étudions les conditions nécessaires et suffisantes pour qu’un système d’équations différentielles ordinaires du second ordre soit le système d’Euler-Lagrange associé à un lagrangien régulier. Dans la thèse de Z. Muzsnay cette technique a été déjà appliquée pour donner une version moderne du papier classique de Douglas qui traite le cas de la dimension 2. Ici nous considérons le cas où la dimension est arbitraire, nous...

Sur l'équation de Ginzburg-Landau avec champ magnétique

Sylvia Serfaty (1998)

Journées équations aux dérivées partielles

On étudie la fonctionnelle d’énergie de Ginzburg-Landau J ( u , A ) = 1 2 Ω | A u | 2 + | h - h e x | 2 + κ 2 2 ( 1 - | u | 2 ) 2 , qui modélise les supraconducteurs cylindriques soumis à un champ magnétique extérieur h e x , dans l’asymptotique κ . On trouve et on décrit des branches de solutions stables des équations associées. On a une estimation sur la valeur critique H c 1 ( κ ) de h e x correspondant à une «transition de phase» où des vortex (c.à.d. zéros de u ) deviennent énergétiquement favorables. On obtient également dans le cas d’un disque, que pour h e x H c 1 comme pour h e x H c 1 , il existe à la...

Sur les propriétés topologiques des projections lagrangiennes en géométrie symplectique des caustiques.

V. I. Arnold (1995)

Revista Matemática de la Universidad Complutense de Madrid

La caustique d?un point sur une variété riemannienne est l?ensemble des points d?intersection des géodésiques infiniment voisins partant de ce point. Jacobi a remarqué, en utilisant un raisonnement topologique, que la caustique d?un point sur une surface convexe fermée doit avoir des points de rebroussement. Il a aussi annoncé (sans démonstration) que le nombre de ces points est quatre pour les caustiques sur les surfaces d?ellipsoïdes (Jacobi, 1964). Dans cette note j?essaie d?inclure les théorèmes...

Currently displaying 61 – 80 of 85