Stochastic methods and differential geometry
We classify Hopf cylinders with proper mean curvature vector field in Sasakian 3-manifolds with respect to the Tanaka-Webster connection.
In Carnot groups of step ≤ 3, all subriemannian geodesics are proved to be normal. The proof is based on a reduction argument and the Goh condition for minimality of singular curves. The Goh condition is deduced from a reformulation and a calculus of the end-point mapping which boils down to the graded structures of Carnot groups.
En utilisant la version de Spencer-Goldschmidt du théorème de Cartan-Kähler nous étudions les conditions nécessaires et suffisantes pour qu’un système d’équations différentielles ordinaires du second ordre soit le système d’Euler-Lagrange associé à un lagrangien régulier. Dans la thèse de Z. Muzsnay cette technique a été déjà appliquée pour donner une version moderne du papier classique de Douglas qui traite le cas de la dimension 2. Ici nous considérons le cas où la dimension est arbitraire, nous...
On étudie la fonctionnelle d’énergie de Ginzburg-Landauqui modélise les supraconducteurs cylindriques soumis à un champ magnétique extérieur , dans l’asymptotique . On trouve et on décrit des branches de solutions stables des équations associées. On a une estimation sur la valeur critique de correspondant à une «transition de phase» où des vortex (c.à.d. zéros de ) deviennent énergétiquement favorables. On obtient également dans le cas d’un disque, que pour comme pour , il existe à la...
La caustique d?un point sur une variété riemannienne est l?ensemble des points d?intersection des géodésiques infiniment voisins partant de ce point. Jacobi a remarqué, en utilisant un raisonnement topologique, que la caustique d?un point sur une surface convexe fermée doit avoir des points de rebroussement. Il a aussi annoncé (sans démonstration) que le nombre de ces points est quatre pour les caustiques sur les surfaces d?ellipsoïdes (Jacobi, 1964). Dans cette note j?essaie d?inclure les théorèmes...