A unified approach to min-max critical point theorems.
This paper is motivated by a gauged Schrödinger equation in dimension 2 including the so-called Chern-Simons term. The study of radial stationary states leads to the nonlocal problem: , where . This problem is the Euler-Lagrange equation of a certain energy functional. In this paper the study of the global behavior of such functional is completed. We show that for , the functional may be bounded from below or not, depending on . Quite surprisingly, the threshold value for is explicit. From...
The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both -Harmonic and -biharmonic operators is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces and .
This paper is devoted to a study of harmonic mappings of a harmonic space on a harmonic space which are related to a family of harmonic mappings of into . In this way balayage in may be reduced to balayage in . In particular, a subset of is polar if and only if is polar. Similar result for thinness. These considerations are applied to the heat equation and the Laplace equation.
It is shown that when in a higher order variational principle one fixes fields at the boundary leaving the field derivatives unconstrained, then the variational principle (in particular the solution space) is not invariant with respect to the addition of boundary terms to the action, as it happens instead when the correct procedure is applied. Examples are considered to show how leaving derivatives of fields unconstrained affects the physical interpretation of the model. This is justified in particular...
We shall be concerned with the existence of almost homoclinic solutions for a class of second order functional differential equations of mixed type: , where t ∈ ℝ, q ∈ ℝⁿ and T>0 is a fixed positive number. By an almost homoclinic solution (to 0) we mean one that joins 0 to itself and q ≡ 0 may not be a stationary point. We assume that V and u are T-periodic with respect to the time variable, V is C¹-smooth and u is continuous. Moreover, f is non-zero, bounded, continuous and square-integrable....
In this paper, we introduce the notion of symplectic harmonic maps between tamed manifolds and establish some properties. In the case where the manifolds are almost Hermitian manifolds, we obtain a new method to contruct harmonic maps with minimal fibres. We finally present examples of such applications between projectives spaces.