Previous Page 5

Displaying 81 – 98 of 98

Showing per page

Sur certains pseudogroupes de biholomorphismes locaux de ( n , 0 )

Michel Belliart (2001)

Bulletin de la Société Mathématique de France

On montre que si Γ est un pseudogroupe de transformations locales holomorphes de n en zéro contenant deux éléments “en position générale” et proches de l’identité, alors : 1) L’action de Γ sur le fibré des jets d’ordre infini sur un petit voisinage épointé de 0 est minimale (c’est-à-dire que si z 0 , z 1 et si φ : z 0 z 1 est un germe de biholomorphisme alors il existe une suite γ n Γ qui converge vers  φ uniformément au voisinage de z 0 ). 2) Γ ne préserve aucune structure géométrique au voisinage de 0 (c’est une conséquence...

Tangent lifts of higher order of multiplicative Dirac structures

P. M. Kouotchop Wamba, A. Ntyam (2013)

Archivum Mathematicum

The tangent lifts of higher order of Dirac structures and some properties have been defined in [9] and studied in [11]. By the same way, the tangent lifts of higher order of Poisson structures have been studied in [10] and some applications are given. In particular, the authors have studied the nature of the Lie algebroids and singular foliations induced by these lifting. In this paper, we study the tangent lifts of higher order of multiplicative Poisson structures, multiplicative Dirac structures...

The Euler-Poincaré-Hopf theorem for flat connections in some transitive Lie algebroids

Jan Kubarski (2006)

Czechoslovak Mathematical Journal

This paper is a continuation of [19], [21], [22]. We study flat connections with isolated singularities in some transitive Lie algebroids for which either or s l ( 2 , ) or so ( 3 ) are isotropy Lie algebras. Under the assumption that the dimension of the isotropy Lie algebra is equal to n + 1 , where n is the dimension of the base manifold, we assign to any such isolated singularity a real number called an index. For -Lie algebroids, this index cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf...

The modular class of a Poisson map

Raquel Caseiro, Rui Loja Fernandes (2013)

Annales de l’institut Fourier

We introduce the modular class of a Poisson map. We look at several examples and we use the modular classes of Poisson maps to study the behavior of the modular class of a Poisson manifold under different kinds of reduction. We also discuss their symplectic groupoid version, which lives in groupoid cohomology.

The Weil algebra and the Van Est isomorphism

Camilo Arias Abad, Marius Crainic (2011)

Annales de l’institut Fourier

This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra W ( A ) associated to any Lie algebroid A . We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual...

Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries

Éliane Salem (1988)

Annales de l'institut Fourier

On montre que tout pseudogroupe d’isométries locales d’une variété riemannienne, qui est complet et fermé pour la topologie C 1 est un pseudogroupe de Lie. Ce résultat généralise au cas des pseudogroupes le théorème de S. Myers et N. Steenrod selon lequel le groupe des isométries d’une variété riemannienne est un groupe de Lie.

Universal lifting theorem and quasi-Poisson groupoids

David Inglesias-Ponte, Camille Laurent-Gengoux, Ping Xu (2012)

Journal of the European Mathematical Society

We prove the universal lifting theorem: for an α -simply connected and α -connected Lie groupoid Γ with Lie algebroid A , the graded Lie algebra of multi-differentials on A is isomorphic to that of multiplicative multi-vector fields on Γ . As a consequence, we obtain the integration theorem for a quasi-Lie bialgebroid, which generalizes various integration theorems in the literature in special cases. The second goal of the paper is the study of basic properties of quasi-Poisson groupoids. In particular,...

Weitzenböck Formula on Lie Algebroids

Bogdan Balcerzak, Jerzy Kalina, Antoni Pierzchalski (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

A Weitzenböck formula for the Laplace-Beltrami operator acting on differential forms on Lie algebroids is derived.

Currently displaying 81 – 98 of 98

Previous Page 5