Étude des feuilletages transversalement complets et applications
It is shown that if a manifold admits an exact symplectic form, then its Poisson Lie algebra has non trivial formal deformations and the manifold admits star-products. The non-formal derivations of the star-products and the deformations of the Poisson Lie algebra of an arbitrary symplectic manifold are studied.
We prove that on an asymptotically Euclidean boundary groupoid, the heat kernel of the Laplacian is a smooth groupoid pseudo-differential operator.
Dans cet article nous montrons que tout feuilletage conforme, transversalement analytique, de codimension supérieure ou égale à trois sur une variété compacte connexe est transversalement Möbius ou riemannien. Ce théorème peut être vu comme une généralisation, transversalement à un feuilletage, du théorème Ferrand-Obata.
In this communication, I recall the main results [BDK1] in the classification of finite Lie pseudoalgebras, which generalize several previously known algebraic structures, and announce some new results [BDK2] concerning their representation theory.
We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study certain generic sets of Poisson structures on Riemann surfaces: we find complete gauge-equivalence invariants...
Un système fini d’isométries partielles de est dit à générateurs indépendants si les composés non triviaux fixent au plus un point. On décrit un procédé simple et naturel pour obtenir des générateurs indépendants, sans modifier les orbites, pour tout système sans composante minimale homogène : en prenant la restriction de chaque générateur à un certain sous-intervalle de son domaine. Un système avec une composante minimale homogène ne possède pas de générateurs indépendants.
Let M be a manifold with a regular foliation F. We recall the construction of the fundamental groupoid and the homotopy groupoid associated to F. We describe some interesting particular cases and give some glueing techniques. We characterize the cases where these groupoids are Hausdorff spaces.We study in particular both groupoids associated to foliations with Reeb components.