Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Une version microlocale de la condition ( w ) de Verdier

David J. A. Trotman (1989)

Annales de l'institut Fourier

Kashiwara et Schapira ont proposé une condition de régularité appelée ( μ ) sur un couple de sous-variétés X , Y d’une variété C 2 M : ( T Y * M + ^ T X * M ) ( T * M ) | Y T Y * M , où + ^ est une somme géométrique naturelle dans l’analyse microlocale. Nous démontrons que la ( μ )-régularité est équivalente à la ( w ) -régularité de Verdier, répondant ainsi à une question de Kashiwara.

Uniform controllability for the beam equation with vanishing structural damping

Ioan Florin Bugariu (2014)

Czechoslovak Mathematical Journal

This paper is devoted to studying the effects of a vanishing structural damping on the controllability properties of the one dimensional linear beam equation. The vanishing term depends on a small parameter ε ( 0 , 1 ) . We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls v ε as ε goes to zero. It is shown that for any time T sufficiently large but independent of ε and for each initial data in a suitable space there exists a uniformly bounded...

Unitons and their moduli.

Anand, Christopher Kumar (1996)

Electronic Research Announcements of the American Mathematical Society [electronic only]

Universal prolongation of linear partial differential equations on filtered manifolds

Katharina Neusser (2009)

Archivum Mathematicum

The aim of this article is to show that systems of linear partial differential equations on filtered manifolds, which are of weighted finite type, can be canonically rewritten as first order systems of a certain type. This leads immediately to obstructions to the existence of solutions. Moreover, we will deduce that the solution space of such equations is always finite dimensional.

Upper bounds for the number of resonances on geometrically finite hyperbolic manifolds

David Borthwick, Colin Guillarmou (2016)

Journal of the European Mathematical Society

On geometrically finite hyperbolic manifolds Γ d , including those with non-maximal rank cusps, we give upper bounds on the number N ( R ) of resonances of the Laplacian in disks of size R as R . In particular, if the parabolic subgroups of Γ satisfy a certain Diophantine condition, the bound is N ( R ) = 𝒪 ( R d ( log R ) d + 1 ) .

Currently displaying 21 – 38 of 38

Previous Page 2