Une inégalité universelle pour la première valeur propre du laplacien
Kashiwara et Schapira ont proposé une condition de régularité appelée ( sur un couple de sous-variétés d’une variété , où est une somme géométrique naturelle dans l’analyse microlocale. Nous démontrons que la )-régularité est équivalente à la -régularité de Verdier, répondant ainsi à une question de Kashiwara.
This paper is devoted to studying the effects of a vanishing structural damping on the controllability properties of the one dimensional linear beam equation. The vanishing term depends on a small parameter . We study the boundary controllability properties of this perturbed equation and the behavior of its boundary controls as goes to zero. It is shown that for any time sufficiently large but independent of and for each initial data in a suitable space there exists a uniformly bounded...
The aim of this article is to show that systems of linear partial differential equations on filtered manifolds, which are of weighted finite type, can be canonically rewritten as first order systems of a certain type. This leads immediately to obstructions to the existence of solutions. Moreover, we will deduce that the solution space of such equations is always finite dimensional.
On geometrically finite hyperbolic manifolds , including those with non-maximal rank cusps, we give upper bounds on the number of resonances of the Laplacian in disks of size as . In particular, if the parabolic subgroups of satisfy a certain Diophantine condition, the bound is .